DOI QR코드

DOI QR Code

Predicting Extreme-Thickness of Phase Fronts in HMX- and Hydrocarbon-based Propellants

로켓 추진제의 익스트림-스케일 상면 두께 예측

  • 여재익 (서울대학교 기계항공공학부)
  • Published : 2009.01.01

Abstract

The structure of steady wave system is considered which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. With its theoretical basis in one-dimensional continuum shock structure analysis, the present approach estimates the micro-width of waves associated with phase transformation phenomena, n-heptane is selected as the hydrocarbon fuel for evaporation and condensation analysis while HMX is used for melting and freezing analysis of solid rocket propellant. The estimated thickness of evaporation - condensation front of n-heptane is on the order of $10^{-2}$ micron while the HMX melting - freezing front thickness is estimated at 1 micron.

정상파 시스템의 구조는 발열반응으로 상변화를 하는 물질의 연속방정식에 의해 타당성을 검증받는다. 1차원 연속체 충격 구조 분석에서의 이론적 배경을 기반으로, 상변화 현상과 관련된 파의 마이크로 두께를 산출하였다. 상변화를 하는 물질로써, n-heptane은 탄화수소 연료의 증발과 응축 분석에 사용하였고, HMX은 고체 로켓 연료의 용융과 응고 분석에 사용하였다. n-heptane의 증발-응축 면의 산출 두께는 $10^{-2}$ 마이크론 차수이고, 반면에 HMX의 용융-응고 면의 산출 두께는 1 마이크론 차수 이다. 소개된 상면 두께 산출 이론은 실험적으로 얻을 수 없는 방대한 범위의 에너지 물질까지 계산범위를 확장시킬 수 있다.

Keywords

References

  1. J.J. Yoh, "Analysis of phase front structures for energetic materials", J. Phys.: Condens. Matter, 18, pp. 8179-8193, 2006. https://doi.org/10.1088/0953-8984/18/35/006
  2. G.A. Ruderman, J.J. Yoh, and D.S. Stewart , "A thermomechanical model for energetic materials with phase transformations", SIAM Journal on Applied Mathematics, Vol. 63, pp . 510-537, 2002. https://doi.org/10.1137/S0036139901390258
  3. J.J. Yoh, and X. Zhong, "New Hybrid Runge-Kutta Methods for Unsteady Reactive Flow Simulation", AIAA Journal,, 42, pp. 1593-1600, 2004. https://doi.org/10.2514/1.3843
  4. W.A. Sirignano, "Fluid Dynamics and Transport of Droplets and Sprays", Cambridge University Press, 1999.
  5. C.K. Law, "Recent Advances in Droplet Vaporization and Condensation", Progress in Energy and Combustion Science, 88, pp. 171-201, 1982.
  6. J.S. Shuen, V. Yang, and C.C. Hsia, "Combustion of Liquid-Fuel Droplets in Supercritical Conditions", Combustion and Flame, 89, pp. 299-319, 1992. https://doi.org/10.1016/0010-2180(92)90017-J
  7. P.A. Thompson, "Compressible-Fluid Dynamics," Advanced Engineering Series, 1988.
  8. J. Timmermans, Physico-chemical Constants of Pure Organic Compounds, v.1, 2, New York: Elsevier Publishing Co., 1965.
  9. T.L. Boggs, "The Thermal Behavior of Cyclotrimethylenetrinitramine (RDX) and Cyclotetramethyleneteranitramine (HMX)", Progress in Astro. and Aero., 90, pp. 121-175, 1984.
  10. B.M. Dobratz and P.C. Crawford, LLNL Explosive Hand Book, Lawrence Livermore National Laboratory, 1985.
  11. J.M. Rosen and C. Dickinson, "Vapor Pressures and Heats of Sublimation of Some High Melting Organic Explosives", Journal of chemical and Engineering Data, 14, pp. 120-124, 1969. https://doi.org/10.1021/je60040a044
  12. J.W. Taylor and R. J. Crookes, "Vapour Pressure and Enthalpy of Sublimation of HMX", Journal of Chemical Society. Faraday Transactions, 72, pp. 73-728, 1976. https://doi.org/10.1039/f19767200073
  13. J.J. Yoh and M.A. McClelland, "An Overview of Thermal-Chemical-Mechanical Modeling off HMX-based Explosives", 41st Joint Propulsion Conference, Tucson, AZ, 2005, AIAA-2005-4554.
  14. W. Fickett and W. C. Davis, Detonation, University of California Press, Berkeley, CA., 1979.
  15. F.A. Williams, Combustion Theory, Addison-Wesley, 1985.
  16. F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill Book Co., 1985.
  17. A.B. Pippard, Elements off Classical Thermodynamics for Advanced Student of Physics, Cambridge University Press, 1966.
  18. H.B. Callen, Thermodynamics, John Wiley & Sons Inc., 1985.
  19. J.-P. Poirier, Introduction to the Physics of the Earth's Interior, Cambridge University Press, 1991.