DOI QR코드

DOI QR Code

Antifungal Activity of Bacillus polyfermenticus CJ6 Isolated from Meju

메주로부터 분리한 Bacillus polyfermenticus CJ6의 항진균 활성

  • Published : 2009.04.30

Abstract

The CJ6 bacterial strain, which possesses strong antifungal activity, was isolated from meju and identified as Bacillus polyfermenticus based on Gram staining, biochemical properties, and 16S rRNA gene sequencing. B. polyfermenticus CJ6 showed antimicrobial activity against the various pathogenic molds, yeasts, and bacteria. Antifungal activity from B. polyfermenticus CJ6 was reduced after 24 hr at $70^{\circ}C$ but antifungal activity was not completely destroyed. The antifungal activity was stable in the pH range of $3.0{\sim}9.0$, and inactivated by proteinase K, protease, and ${\alpha}$-chymotrypsin, which indicate its proteinaceous nature. The apparent molecular masses of the partially purified antifungal compound, as indicated by using the direct detection method in Tricine-SDS-PAGE, was approximately 1.4 kDa.

메주로부터 곰팡이 및 세균 등에 생육 저해활성을 나타내는 균주 B. polyfermenticus CJ6을 분리 동정하였다. 분리 균주 B. polyfermenticus CJ6는 2단 대수기를 나타내는 생육 곡선상 특이점을 나타내었으며 배양 30시간 이후부터 최대 활성을 나타내었고 사멸기 이후 활성이 다소 감소되었으나 120시간까지 활성을 유지하였다. B. polyfermenticus CJ6의 항진균 활성 물질은 $70^{\circ}C$ 이상에서 활성이 감소되었으나 $121^{\circ}C$에서 15분간 열처리 시 역가가 완전히 소실되지 않았다. pH 안정성 실험에서는 pH $3.0{\sim}9.0$ 구간에서 안정한 활성을 나타내었으며, 각종 효소에 대한 영향에서 항진균 활성물질은 proteinase K, protease, ${\alpha}$-chymotrypsin 등의 단백분해효소 처리로 역가를 상실하거나 일부 감소되어 단백질성 물질임을 추정하였다. 균주의 항진균 활성 물질을 $C_{18}$ Sep-Pak column으로 부분 정제한 후 Tricine-SDS-PAGE 및 direct detection 실험을 통하여 분자량이 약 1.4 kDa의 물질임을 확인하였다. B. polyfermenticus CJ6가 생산하는 항진균 활성 물질은 기존에 거의 보고되지 않은 B. polyfermenticus 유래의 단백질성 항진균 활성 물질로서 천연보존제 및 천연항균제재로 사용이 기대되며, 이를 위하여 항진균 활성 물질들의 정제 및 구조분석 등의 연구가 필요하다.

Keywords

References

  1. Jack RW, Tagg JR, Ray B. 1995. Bacteriocins of gram-positive bacteria. Microbiol Rev 59: 171-200
  2. Ryoo SW, Maeng HY, Maeng PJ. 1996. Purification and characterization of antifungal compounds produced by Bacillus subtilis KS1. Kor J Mycology 24: 293-304
  3. Tagg JR, Dajani AS, Wannamaker LW. 1976. Bacteriocins of gram-positive bacteria. Bacteriol Rev 40: 722-756
  4. Omura S, Iwai Y, Masuma R, Hayashi M, Furusato T, Takagaki T. 1980. A new peptide antibiotic, alboleutin. J Antibiot 33: 758-759 https://doi.org/10.7164/antibiotics.33.758
  5. Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF. 1995. Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J Antibiot 48: 1240-1247 https://doi.org/10.7164/antibiotics.48.1240
  6. Tenoux I, Besson F, Michel G. 1991. Studies on the antifungal antibiotics: bacillomycin D and bacillomycin D methylester. Microbios 67: 187-193
  7. Newton GG. 1949. Antibiotics from a strain of B. subtilis; bacilipin A and B and bacilysin. Br J Exp Pathol 30: 306-319
  8. Vanittanakom N, Loeffler W, Koch U, Jung G. 1986. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39: 888-901 https://doi.org/10.7164/antibiotics.39.888
  9. Besson F, Hourdou ML, Michel G. 1990. Studies on the biosynthesis of iturin, an antibiotic of Bacillus subtilis, and a lipopeptide containing beta-hydroxy fatty acids. Biochim Biophys Acta 1032: 101-106
  10. Maget-Dana R, Peypoux F. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87: 151-174 https://doi.org/10.1016/0300-483X(94)90159-7
  11. Besson F, Michel G. 1990. Mycosubtilins B and C: minor antibiotics from mycosubtilin-producer Bacillus subtilis. Microbios 62: 93-99
  12. Peypoux F, Pommier MT, Marion D, Ptak M, Das BC, Michel G. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J Antibiot 39: 636-641 https://doi.org/10.7164/antibiotics.39.636
  13. Kugler M, Loeffler W, Rapp C, Kern A, Jung G. 1990. Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: biological properties. Arch Microbiol 153: 276-281 https://doi.org/10.1007/BF00249082
  14. Sharp RJ, Scawen MD, Atkinson T. 1989. Fermentation and downstream processing of Bacillus. In Bacillus. Biotechnology Handbooks. Harwood CR, ed. Plenum Press, New York. p 255-292
  15. Green DH, Wakeley PR, Page A, Barnes A, Baccigalupi L, Ricca E, Cutting SM. 1999. Characterization of two Bacillus probiotics. Appl Environ Microbiol 65: 4228-4291
  16. Hoa NT, Baccigalupi L, Huxham A, Smertenko A, Van PH, Ammendola S, Ricca E, Cutting SM. 2000. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl Environ Microbiol 66: 5241-5247 https://doi.org/10.1128/AEM.66.12.5241-5247.2000
  17. Park HS, Lee SH, Uhm TB. 1998. Selection of microorganisms for probiotics and their characterization. J Food Sci Nutr 3: 433-440
  18. Biscan, Binnex Co., Korea. 2001. http://www.bi-nex.com/
  19. Duc LH, Cutting SM. 2003. Bacterial spores as heat stable vaccine vehicles. In Expert Opinion on Biological Therapy. School of Biological Sciences, Royal Holloway, University of London. Vol 3, p 1263-1270
  20. Sneath PHA. 1986. Endospore-forming gram-positive rods and cocci. In Bergey's Manual of Systematic Bacteriology. Sneath PHA, Mair NS, Sharpe ME, Holt JG, eds. The Williams & Wilkins Company, Baltimore, MD. p 1104-1139
  21. Lee KH, Jun KD, Kim WS, Paik HD. 2001. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett Appl Microbiol 32: 146-151 https://doi.org/10.1046/j.1472-765x.2001.00876.x
  22. Yoon JH, Lee ST, Park YH. 1996. Inter-and intraspecific phylogenic analysis of the genes Nocardioides and related taxa based on 16s rDNA sequences. Int J Syst Bacteriol 48: 187-194 https://doi.org/10.1099/00207713-48-1-187
  23. http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi. 2006
  24. Tagg JR, McGiven AR. 1971. Assay system for bacteriocin. Appl Microbiol 21: 943
  25. Chang M, Chang HC. 2007. Characteristics of bacterial-koji and doenjang (soybean paste) made by using Bacillus subtilis DJI. Kor J Microbiol Biotechnol 35: 325-333
  26. Chang M, Chang HC. 2006. Enhancement of bacteriocin production by Bacillus subtilis cx1 in the presence of Bacillus subtilis ATCC 6633. Kor J Microbiol Biotechnol 34: 221-227
  27. Hoover DG, Harlander SK. 1993. Screening methods for detecting bacteriocin activity. In Bacteriocins of Lactic Acid Bacteria. Hoover DG, Steenson LR, eds. Academic Press, Inc., San Diego, USA. p 23-39
  28. Yang EJ, Chang HC. 2007. Characterization of bacter iocin-like substances produced by Bacillus subtilis MJP1. Kor J Microbiol Biotechnol 35: 339-346
  29. Schagger H, von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  30. Bhunia AK, Johnson MC, Ray B. 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl-polyacrylamide gel electrophoresis. J Indust Microbiol 2: 319-322 https://doi.org/10.1007/BF01569434
  31. Lebbadi M, Galvez A, Maqueda M, Martinez-Bueno M, Valdivia E. 1994. Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J Appl Bacteriol 77: 49-53 https://doi.org/10.1111/j.1365-2672.1994.tb03043.x
  32. Peypoux F, Besson F, Michel G, Delcambe L. 1981. Structure of bacillomycin D, a new antibiotic of the iturin group. Eur J Biochem 118: 323-327 https://doi.org/10.1111/j.1432-1033.1981.tb06405.x
  33. Tsuge K, Ano T, Shoda M. 1995. Characterization of Bacillus subtilis YB8, coproducer of lipopeptides surfactin and plipastatin B1. J Gen Appl Microbiol 41: 541-545 https://doi.org/10.2323/jgam.41.541
  34. Katz E, Demain AL. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41: 449-474
  35. Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56: 845-857 https://doi.org/10.1111/j.1365-2958.2005.04587.x

Cited by

  1. Characterization of Antibacterial Compounds from Bacillus polyfermenticus CJ6 and Its Growth Inhibition Effect on Food-Borne Pathogens vol.40, pp.6, 2011, https://doi.org/10.3746/jkfn.2011.40.6.903
  2. Identification of surfactin producing strains in Soumbala and Bikalga fermented condiments using Polymerase Chain Reaction and Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry methods vol.151, pp.3, 2011, https://doi.org/10.1016/j.ijfoodmicro.2011.09.022
  3. Isolation and characterization of Bacillus polyfermenticus isolated from Meju, Korean soybean fermentation starter vol.26, pp.6, 2010, https://doi.org/10.1007/s11274-009-0276-z
  4. Anti-inflammatory Effect of Extracts from Folk Plants in Ulleung Island vol.26, pp.2, 2013, https://doi.org/10.7732/kjpr.2013.26.2.169
  5. Evaluation of the Probiotic Potential of Bacillus polyfermenticus CJ6 Isolated from Meju, a Korean Soybean Fermentation Starter vol.22, pp.11, 2009, https://doi.org/10.4014/jmb.1205.05049