Permeation Characteristics of the Microfiltration Tubular Module using the Discharged Rod

배출봉을 이용한 정밀여과용 관형 모듈의 투과특성

  • Chung, Kun-Yong (Department of Chemical Engineering, Seoul National University of Technology) ;
  • Choi, Jeong-Gyu (Department of Chemical Engineering, Seoul National University of Technology)
  • 정건용 (서울산업대학교 화학공학과) ;
  • 최정규 (서울산업대학교 화학공학과)
  • Published : 2009.12.30

Abstract

The permeation experiments were carried out for the nominal pore size $0.1\;{\mu}m$ and 5 mm inner diameter microfiltration tubular membrane equipped with self-designed discharging rod in order to determine the effect of fouling reduction. Dioctyl tinoxide (DOTO) latex particle was used to prepare up to 0.5 wt% concentration of feed solution, and the experiments were operated within 1.6 bar. The permeation flux effect on the discharged rod was measured as a result of flux comparison between the cases of equipped and non-equipped discharge rod modules for every experiment. The permeation flux for the case using the discharged rod was enhanced to 20% at 1.6 bar operating pressure. The improvement on permeation flux for using the discharged rod was greater as the concentration of feed increased, and reached up to 43% under 0.5 wt% concentration of feed solution.

공칭 세공크기 $0.1\;{\mu}m$이고 내경이 5 mm인 정밀여과용 관형 분리막 내에 자체 설계한 배출봉을 삽입하여 막오염 감소효과에 따른 투과유속을 측정하였다. 원료용액으로는 에멀젼 상태의 dioctyl tinoxide (DOTO) 입자를 사용하였으며 0.5 wt%까지 농도를 변화시키면서 1.6 bar 이내에서 운전하였다. 배출봉의 효과는 매 실험마다 배출봉을 삽입한 경우와 사용하지 않은 경우의 투과유속을 비교하여 평가하였다. 배출봉을 사용할 경우 운전압력 1.6 bar에서 최대 20%의 투과유속이 향상되었다. 또한 DOTO 농도가 증가함에 따라서 배출봉에 의한 투과유속 향상효과는 크게 나타났으며 0.5 wt% 농도에서 43%까지 투과유속이 향상되었다.

Keywords

References

  1. K. Y. Chung, M. E. Brewster, and G. Belfort, 'Dean vortices with wall flux in a curved channel membrane system 3. Concentration polarization in a spiral reverse osmosis slit,' J. Chemical Eng. Japan, 31(5), 683 (1998) https://doi.org/10.1252/jcej.31.683
  2. S. Najarian and B. Bellhouse, 'Effect of liquid pulsation on protein fractionation using ultrafiltration processes,' J. Membr. Sci., 114, 245 (1996) https://doi.org/10.1016/0376-7388(96)00004-X
  3. L. Broussous, E. Prouzet, L. Beque, and A. Larbot 'An experimental study of helically stamped ceramic microfiltration membrane using bentonite suspensions,' Separation & Purification Tech., 24, 205 (2001) https://doi.org/10.1016/S1383-5866(01)00128-9
  4. S. H. Lee and R. M. Lueptow, 'Rotating membrane filtration and rotating reverse osmosis,' J. Chemical Eng. Japan, 37(4), 471 (2004) https://doi.org/10.1252/jcej.37.471
  5. K. Y. Chung and M. S. Lee, 'Flux enhancement in a helical microfiltration module with gas injection,' Separation Science & Technology, 40, 2479 (2005) https://doi.org/10.1080/01496390500267533
  6. S. T. Nam and M. J. Han, 'Back flushing behavior of microfiltration membrane fouled by alumina colloidal suspensions,' Membrane Journal, 19(1), 34 (2009)
  7. J. Y Park and S. H. Lee, 'Effect of water-backflushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane,' Membrane Journal, 19(3), 194 (2009)
  8. J. Y Park and G. Y. Park, 'Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption: Effect of organic materials in N2-backflushing,' Membrane Journal, 19(3), 203 (2009)
  9. L. Ding, O. Al-Akoum, A. Abraham, and M. Y. Jaffrin, 'Milk protein concentration by ultrafiltration with rotating disk modules,' Desalination, 144, 307 (2002) https://doi.org/10.1016/S0011-9164(02)00334-X
  10. Y. S. Cho, J. P. Kim, and K. Y. Chung, 'Permeation characteristics of the submerged membrane module using the rotating disks,' Membrane Journal, 16(1), 51 (2006)
  11. M. Frappart, M. Jaffrin, and L. H. Ding, 'Reverse osmosis of diluted skim milk: Comparison of results obtained from vibratory and rotating disk modules,' Separation & Purification Technology, 60, 321 (2008) https://doi.org/10.1016/j.seppur.2007.09.007