Development of a Model of Brain-based Evolutionary Scientific Teaching for Learning

뇌기반 진화적 과학 교수학습 모형의 개발

  • Published : 2009.12.31

Abstract

To derive brain-based evolutionary educational principles, this study examined the studies on the structural and functional characteristics of human brain, the biological evolution occurring between- and within-organism, and the evolutionary attributes embedded in science itself and individual scientist's scientific activities. On the basis of the core characteristics of human brain and the framework of universal Darwinism or universal selectionism consisted of generation-test-retention (g-t-r) processes, a Model of Brain-based Evolutionary Scientific Teaching for Learning (BEST-L) was developed. The model consists of three components, three steps, and assessment part. The three components are the affective (A), behavioral (B), and cognitive (C) components. Each component consists of three steps of Diversifying $\rightarrow$ Emulating (Executing, Estimating, Evaluating) $\rightarrow$ Furthering (ABC-DEF). The model is 'brain-based' in the aspect of consecutive incorporation of the affective component which is based on limbic system of human brain associated with emotions, the behavioral component which is associated with the occipital lobes performing visual processing, temporal lobes performing functions of language generation and understanding, and parietal lobes, which receive and process sensory information and execute motor activities of the body, and the cognitive component which is based on the prefrontal lobes involved in thinking, planning, judging, and problem solving. On the other hand, the model is 'evolutionary' in the aspect of proceeding according to the processes of the diversifying step to generate variants in each component, the emulating step to test and select useful or valuable things among the variants, and the furthering step to extend or apply the selected things. For three components of ABC, to reflect the importance of emotional factors as a starting point in scientific activity as well as the dominant role of limbic system relative to cortex of brain, the model emphasizes the DARWIN (Driving Affective Realm for Whole Intellectual Network) approach.

이 연구에서는 뇌기반 진화적 교육 원리를 도출하기 위하여, 인간 뇌의 구조적 기능적 특징, 개체간과 개체내에서 일어나는 생물학적 진화, 뇌내에서 일어나는 진화적 과정, 과학 자체와 개별 과학자의 과학적 활동에 내재된 진화적 속성에 관한 연구물을 리뷰하였다. 이렇게 하여 도출된 인간 뇌의 주요 특징과 생성-선택-파지를 핵심 요소로 하는 보편 다윈주의 혹은 보편 선택주의를 토대로, 뇌기반 진화적 과학 교수 학습 모형을 개발하였다. 이 모형은 세 가지 요소와 세 가지 단계 및 평가로 이루어진다. 세 가지 요소는 정의적, 행동적, 인지적 요소이고, 각 요소를 구성하는 세 단계는 다양화 $\rightarrow$ 비교 선택 $\rightarrow$ 확장 적용(ABC-DEF; Affective, Behavioral, Cognitive components - Diversifying$\rightarrow$Emulating, Estimating, Evaluating $\rightarrow$ Furthering steps)이다. 이 모형에서 정의적 요소 (A)는 인간 뇌에서 감성을 관장하는 대뇌변연계에 토대를 두고 자연 사물과 현상에 대한 학습자의 흥미 호기심과 관련된다. 행동적 요소(B)는 시각 정보를 처리하는 후두엽, 언어 정보의 이해.생성과 관련된 측두엽, 감각운동 정보를 처리하는 감각운동령을 수반하고 과학적 활동의 직접 해보기와 관련된다. 인지적 요소(C)는 사고, 계획, 판단, 문제해결과 관련된 전두엽합령에 토대를 둔다. 이 모형은 이러한 측면에서 '뇌기반(brain-based)'이다. 이 모형의 세 가지 각 요소를 구성하는 세 단계에서, 다양화 단계(D)는 각 요소에서 다양한 변이체를 생성하는 과정이고, 가치나 유용성에 비추어 비교.선택하는 단계(E)는 변이체들 중 유용하거나 가치 있는 것을 검증하여 선택하는 과정이며, 확장.적용 단계(F)는 선택된 것을 유사한 상황으로 확장하거나 적용하는 단계이다. 이 모형은 이러한 측면에서 '진화적(evolutionary)'이다. ABC 세 요소에 대해, 과학적 활동에서 감성적 요인이 출발점으로 갖는 중요성과 뇌에서 사고 기능과 관련되는 신피질에 비해 감성을 관장하는 대뇌변연계의 우세한 역할을 반영하여 DARWIN (Driving Affective Realm for Whole Intellectual Network) 접근법을 강조한다. 이 모형은 학교 현장에서 다루는 과학 주제와 학생의 특징에 따라 다양한 형태와 수준으로 융통성 있게 실행될 수 있다.

Keywords

References

  1. 강호감 (1991). 두뇌의 기능분화에 따른 교수전략이 창의력 및 자연과 학업성취도에 미치는 영향. 서울대학교 박사학위논문
  2. 교육인적자원부 (2007). 과학과 교육과정. 대한교과서주식회사
  3. 권용주 (1998). 청소년들에게서 전두연합령은 어떻게 과학적 추론 및 과학개념 변화의 수행을 매개하는가? 한국과학교육학회지, 18(3), 427-442
  4. 김용진 (2000). 학습 활동의 뇌파 분석에 기초한 두뇌 순환 학습 모형의 개발과 과학 학습에의 적용. 서울대학교 대학원 박사학위 논문
  5. 김재영 (2000). 뇌기능 발달에 기초한 초등과학 교육과정 개발에 관한 연구. 서울대학교 대학원 박사학위 논문
  6. 배진호 (1999). 과학교육에서 두뇌학습 원리에 기초한 창발수업모형의 개발. 서울대학교 대학원 박사학위 논문
  7. 신동훈 (2006). 생물학 가설 생성에서 나타나는 과학적 감성의 생성 과정 설명을 위한 신경 인지적 모형 개발. 한국생물교육학회지, 34(2), 232-245
  8. 임채성 (1992). 일중 시간에 따른 인지기능의 변화에 의거한 고등학교 학생의 과학학습 증진을 위한 교수 전략. 서울대학교 박사학위 논문
  9. 임채성 (1997). 협동학습의 대뇌생물학적 기초: 아이디어-공유-창출 모델. 한국생물교육학회지, 25(2),143-155
  10. 임채성 (2005). 뇌 기능에 기초한 과학 교수학습: 뇌 기능과 학교 과학의 정의적.심체적.인지적 영역 의 연계적 통합 모형. 초등과학교육, 24(1), 86-101
  11. 임채성, 오윤화 (2004). 초등학교 학생이 지각한 감성 상태와 과학 학습 경험에 대한 기억의 관계. 한국생물교육학회지, 32(2), 173-180
  12. 최선영 (1999). 전뇌학습 프로그램이 초등학생의 창의력, 자연과 학업성취도, 과학적 태도 및 학습양식 에 미치는 효과. 서울대학교 대학원 박사학위 논문
  13. Adams, P. (1998). Hebb and Darwin. Journal of Theoretical Biology, 195, 419-438 https://doi.org/10.1006/jtbi.1997.0620
  14. Anderson, L. W., & Krathwohl, D. R. (2001, Eds.). A taxonomy for learning and assessing : A revision of Bloom’s taxonomy of educational objectives. Allyn & Bacon
  15. Armony, J. L., & LeDoux, J. E. (2000). How danger is encoded: Toward a systems, cellular, and computational understanding of cognitive-emotional interactions in fear. In M. S. Gazzaniga (2nd ed.). The new cognitive neuroscience. A Bradford Book. Cambridge, The MIT Press. pp. 1067-1079
  16. Basalla, G. (1988). The evolution of technology. Cambridge: Cambridge University Press
  17. Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 91-99 https://doi.org/10.1016/S1364-6613(99)01440-0
  18. Blute, M. (2002). The evolutionary ecology of science. Journal of Memetics, 7(1), 21pp. http://jom-emit.cfpm.org/2003/vol7/ blute_m.html
  19. Bowler, P. J. (1996). Life’s splendid drama: Evolutionary biology and the reconstruction of life’s ancestry. Chicago, The University of Chicago Press. pp. 1860-1940
  20. Burnet, F. M. (1957). A modification of Jernes theory of antibody production using the concept of clonal selection. Australian Journal of Science, 20, 67-69
  21. Buss, D. (2007, 3rd Ed.). Evolutionary psychology: The new science of the mind.Allyn & Bacon. [김교현, 권선종, 이홍표 옮김 (2005, 2판). 마음의 기원: 진화심리학. 나노미디어.]
  22. Caine, R. N., & Caine, G. (1994). Making connections: Teaching and the human brain. Addison-Wesley
  23. Calvin, W. H. (1987). The brain as a Darwin machine. Nature, 330, 33-43 https://doi.org/10.1038/330033a0
  24. Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380-400 https://doi.org/10.1037/h0040373
  25. Campbell, D. T. (1965). Variation and selective retention in socio-cultural evolution. in H. R. Barringer, G. I. Blanksten and R. W. Mack(Ed.). Social change in developing areas: A reinterpretation of evolutionary theory. Cambridge, MA, Schenkman
  26. Campbell, D. T. (1974). Evolutionary epistemology. In P. A. Schilpp (Ed.) The philosophy of Karl Popper. (413-463). LaSalle, IL: Open Court
  27. Campbell, D. T. (1987). Evolutionary epistemology. in G. Radnitzky and W. W. Bartley III (Ed.). Evolutionary epistomology: rationality and the sociology of knowledge. LaSalle, IL, Open Court
  28. Campbell, D. T. (1990). Epistemological roles for selection theory. In N. Rescher (Ed.) Evolution, cognition, and realism. Lanham, MD: University Press, pp. 1-19
  29. Campbell, D. T. (1997). From evolutionary epistemology via selection theory to a sociology of scientific validitiy. Evolution and Cognition, 3, 5-38
  30. Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution: A quantitative approach. Princeton, Princeton University Press
  31. Csanyi, V. (1989). Evolutionary systems and society: A general theory of life, mind and culture. Durham, NC, Duke University Press
  32. Cziko, G. (1995) Without miracles: Universal selection theory and the second Darwinian revolution. Cambridge, Massachusetts and London, England: A Bradford Book, The MIT Press
  33. Cziko, G. (2000). The things we do: Using the lessons of Bernard and Darwin to understand the what, how, and why of our behavior. MIT Press. London. pp. 177-198
  34. Damasio, A. (1994). Descartes' error: Emotion, reason, and the human brain. New York: A Grosset/putnam Book
  35. Darwin, C. (1859). The origin of species by means of natural selection, or the preservation of favored races in the struggle for life. Champaign: Project Gutenberg
  36. Dawkins, R. (1976) The Selfish Gene. Oxford University Press
  37. Dawkins, R. (1999). The extended phenotype. Oxford, Oxford University Press.[홍영남 옮김, (2004). 확장된 표현형. 을유문화사.]
  38. Dehaene, S., Changeux, J. P., & Nadal J. P. (1987). Neural networks that learn temporal sequences by selection. Proceedings of National Academy of Sciences USA, 84, 2727-2731 https://doi.org/10.1073/pnas.84.9.2727
  39. Dobzhansky, T. (1951). Genetics and the origin of species. Columbia University Press
  40. Edelman, G. M. (1981). Group selection as the basis for higher brain function. In F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis (Ed.), The organization of the cerebral cortex. Cambridge, Mass., USA: MIT Press, 1981.pp. 535-563
  41. Edelman, G. M. (1987). Neural Darwinism: The theory of neural group selection. Basic Books, NY
  42. Edelman, G. M. (1992). Brilliant air, brilliant fire: On the matter of the mind. London: Penguin
  43. Edelman, G. M. (1993) Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron, 10, 115-125 https://doi.org/10.1016/0896-6273(93)90304-A
  44. Erneling, C. E. (2005). Is cognitive development equivalent to scientific development? In C. E., Erneling, and D. M., Johnson, The mind as a scientific object: Between brain and culture. Oxford University Press
  45. Gabora, L. (1995). Meme and variations: A computer model of cultural evolution. in L. Nadel and D. Stein (Ed.). Lectures in complex systems. Boston, MA, Addison-Wesley. pp. 471-486
  46. Gabora, L. (1996). A day in the life of a meme. Philosophica, 57, 901 -938
  47. Gardner, H. (1983). Frames of minds: The theory of multiple intelligences. New York: Basic Books. [이경희 역 (1993). 마음의 틀. 문음사.]
  48. Gardner, H. (1999). Intelligence reframed : Multiple intelligence for the 21st century. Basic Books. [문용린 옮김 (2001). 다중지능: 인간 지능의 새로운 이해. 김영사.]
  49. Gazzaniga, M. S. (1985), The social brain: Discovering the networks of the mind. Gazzaniga Basic Books, New York
  50. Gazzaniga, M. S. (1992) Nature’s mind: The biological roots of thinking, emotions, sexuality, language and intelligence. London: Penguin Books
  51. Gazzaniga, M. S. (1992) Nature’s mind: The biological roots of thinking, emotions, sexuality, language and intelligence. London: Penguin Books
  52. Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (1998). Cognitive neuroscience: The biology of the mind. New York: W. W. Horton & Co
  53. Geary, D. C. (2002). Principles of evolutionary educational psychology. Learning and Individual Differences, 12, 317-345 https://doi.org/10.1016/S1041-6080(02)00046-8
  54. Geary, D. C. (2007). Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology, In J. S. Carlson and J. R. Levin (Eds.), Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology. Information Age Publishing. pp. 1-99
  55. Goleman, D. (1995). Emotional intelligence. New York: Bantam Books. [황태호 옮김 (1997). 감성지능(상, 하). 비전코리아.]
  56. Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts, and theories. Cambridge, MA: MIT Press
  57. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, The Belknap Press of Harvard University Press
  58. Gould, S. J. (1983). The hardening of the modern synthesis. In M. Grene (Ed.), Dimensions of Darwinism - Themes and counterthemes in twentieth-century evolutionary theory. USA: Cambridge University Press. pp. 71-93
  59. Grobstein, P. (2005). Revisiting science in culture: Science as story telling an story revising. Journal of Research Practice 1(1), Article M1. Retrieved 1 November 2007 from http://jrp.icaap.org/index.php/jrp/article/view/9/18
  60. Hall, B. K. (1992). Evolutionary developmental biology. London, Chapman & Hall
  61. Harvey, I., Di Paolo, E., Wood R., Quinn, M., & Tuci E. (2005). Evolutionary robotics: A new scientific tool for studying cognition. Artificial Life, 11(1), 79-98 https://doi.org/10.1162/1064546053278991
  62. Harvey, I., Husbands, P., Cliff D., Thompson, A., Jakobi, N. (1997). Evolutionary robotics: The Sussex approach. Robotics and Autonomous Systems, 20, 205-224 https://doi.org/10.1016/S0921-8890(96)00067-X
  63. Hebb, D. (1949). The organization of behavior. New York: Wiley
  64. Hofbauer, J., & Sigmund, K. (1988). The theory of evolution and dynamical systems. Cambridge, Cambridge University Press
  65. Hull, D. L. (1988). Science as a process: An evolutionary account of the social and conceptual development of science. The University of Chicago Press, Chicago. [한상기 옮김 (2008). 과정으로서의 과학 1, 2.: 과학 발전에 대한 진화론적 설명. 한길사.]
  66. Hutterlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517-527 https://doi.org/10.1016/0028-3932(90)90031-I
  67. Jensen, E. (2nd ed. 2000). Brain-based learning. Turning Point Publishing
  68. Jerne, N. K. (1955). The natural-selection theory of antibody formation. Proceedings of the National Academy of Sciences of the United States of America, 41, 849-857 https://doi.org/10.1073/pnas.41.11.849
  69. Kauffman, S. (1995). At home in the universe. New York: Oxford University Press
  70. Kelly, G. A. (1977). The psychology of the unknown. In D. Bannister (Ed.), New perspectives in personal construct theory. London: Academic Press. pp. 1-19
  71. Langs, R. (1996a). The evolution of the emotion-processing mind: With an introduction to mental Darwinism. International University Press
  72. Langs, R. (1996b). Mental Darwinism and the evolution of the emotion-processing mind. American Journal of Psychotheraphy, 50(1), 103-123
  73. LeDoux, J. E. (1994). Emotion, memory, and brain. Scientific American, 270(6), 50-57 https://doi.org/10.1038/scientificamerican0694-50
  74. LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life. New York: Simon & Schuster
  75. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155-184 https://doi.org/10.1146/annurev.neuro.23.1.155
  76. Lefton, L. A., & Brannon, L. (2006, 9th Ed.). Psychology. Allyn & Bacon
  77. Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1-18 https://doi.org/10.1146/annurev.es.01.110170.000245
  78. Lorenz, K. (1971) Studies in animal and human behavior. Cambridge, MA, Harvard University Press
  79. Lumsden, C., & Wilson, E. (1981). Genes, mind, and culture: The coevolutionary process. Cambridge, MA, Harvard University Press
  80. MacLean, P. D. (1978). A mind of three minds: Educating the triune brain. In J. Chall & A. Mirsky (Eds.) Education and the brain. Chicago: University of Chicago Press
  81. MacLean, P. D. (1990). The triune brain in evolution. New York: Plenum Press
  82. Mayr, E. (1982). The growth of biological thought: Diversity, evolution and inheritance. Harvard University Press, Cambridge
  83. Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. Cambridge, MA: MIT Press/Bradford Books
  84. Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York, Oxford: Oxford University Press
  85. Pauling, L. (1940). A theory of the structure and process of formation of antibodies. Journal of the American Chemical Society, 62, 2643-2657 https://doi.org/10.1021/ja01867a018
  86. Petrinovich, L. (1997). Human evolution, reproduction, and morality. Springer
  87. Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA: MIT Press
  88. Plotkin, H. (1994). Darwin machines and the nature of knowledge. Harvard University Press. Cambridge
  89. Popper, K. R. (1963). Conjectures and refutations: The growth of scientific knowledge. London: Routledge and Kegan Paul. [이한구 옮김. (2001). 추측과 논박 1, 2. 민음사.]
  90. Popper, K. R. (1968). The logic of scientific discovery. New York: Harper and Row
  91. Quartz, S. R., & Sejnowski, T. J. (1997). The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences, 20, 537-596
  92. Schaverien, L., & Cosgrove, M. (1999). A biological basis for generative learning in technology-and-science Part I: A theory of learning. International Journal of Science Education, 21(12), 1223-1235 https://doi.org/10.1080/095006999290039
  93. Schaverien, L., & Cosgrove, M. (2000). A biological basis for generative learning in technology-and-science Part II: Implications for technology-and-science education. International Journal of Science Education, 22(1), 13-35 https://doi.org/10.1080/095006900289985
  94. Schuster, P., & Sigmund, K. (1983). Replicator dynamics. Journal of Theoretical Biology, 100, 533-538 https://doi.org/10.1016/0022-5193(83)90445-9
  95. Simonton, D. K. (1998). Donald Campbell's model of the creative process: Creativity as blind variation and selective retention. Journal of Creative Behavior, 32, 153-158 https://doi.org/10.1002/j.2162-6057.1998.tb00812.x
  96. Simonton, D. K. (1999a). Creativity as blind variation and selective retention: Is the creative process Darwinian?, Psychological Inquiry, 10, 309-328 https://doi.org/10.1207/S15327965PLI1004_4
  97. Simonton, D. K. (1999b). Origins of genius: Darwinian perspectives on creativity. New York, NY, Oxford University Press
  98. Sousa, D A. (2001, 2nd ed.). How the brain learns. Thousand Oaks, CA: Corwin Press. pp. 245-274
  99. Spector, L., & Luke, S. (1996). Culture enhances the evolvability of cognition. in G. Cottrell (Ed.). Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society. Mahwah, NJ, Lawrence Erlbaum Associates. pp. 672-677
  100. Striedter, G. F. (2005). Principles of brain evolution. Sinauer Associates
  101. Sweller, J. (2003). Evolution of human cognitive architecture. In B. Ross (Ed.), The psychology of learning and motivation, Vol. 43. San Diego, CA: Academic Press. pp. 215-266
  102. Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 32, 9-31 https://doi.org/10.1023/B:TRUC.0000021808.72598.4d
  103. Sweller, J. (2006). Natural information processing systems. Evolutionary Psychology, 4, 434-458
  104. Sylwester, R. (1995). A celebration of neurons: An educator's guide to the human brain. Alexandria, VA: Association for Supervision and Curriculum Development
  105. Sylwester, R. (2000). A biological brain in a cultural classroom: Applying biological research to classroom management. Thousand Oaks, CA: Corwin Press
  106. Talmage, D. W. (1959). David W. Talmage, Immunological specificity: Unique combinations of selected natural globulins provide an alternative to the classical concept. Science, 129, 1643-1648 https://doi.org/10.1126/science.129.3364.1643
  107. Tonegawa, S., Steinberg, C., Dube, S., & Bernardini, A. (1974). Evidence for somatic generation of antibody diversity. Proceedings of the National Academy of Sciences (PNAS), 71, 4027-4031 https://doi.org/10.1073/pnas.71.10.4027
  108. Vincenti, W. G. (1990) What engineers know and how they know it: Analytical studies from aeronautical history. Baltimore: Johns Hopkins University Press
  109. Waddington, C. H. (1977). (published posthumously). Tools for thought. London:Jonathan Cape Ltd
  110. Wilson, D. S. (2007). Evolution for everyone: How Darwin's theory can change the way we think about our lives. Delta