Comparison of Wetting and Drying Characteristics in Differently Textured Soils under Drip Irrigation

점적관개 시 토성별 습윤.건조 특성 비교

  • Kim, Hak-Jin (Department of Bio-Industrial Machinery Engineering, Pusan National University) ;
  • Son, Dong-Wook (Department of Bio-Industrial Machinery Engineering, Pusan National University) ;
  • Hur, Seung-Oh (National Academy of Agricultural Science, RDA) ;
  • Roh, Mi-Young (National Institute of Horticulture & Medicinal Crop, RDA) ;
  • Jung, Ki-Yuol (National Institute of Crop Science, RDA) ;
  • Park, Jong-Min (Department of Bio-Industrial Machinery Engineering, Pusan National University) ;
  • Rhee, Joong-Yong (School of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Lee, Dong-Hoon (School of Life Science and Biotechnologies, Sungkyunkwan University)
  • 김학진 (부산대학교 바이오산업기계공학과) ;
  • 손동욱 (부산대학교 바이오산업기계공학과) ;
  • 허승오 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 노미영 (국립원예특작과학원 시설원예시험장) ;
  • 정기열 (국립식량과학원 기능성작물부) ;
  • 박종민 (부산대학교 바이오산업기계공학과) ;
  • 이중용 (서울대학교 바이오시스템소재학부) ;
  • 이동훈 (성균관대학교 생명공학부)
  • Published : 2009.12.31

Abstract

Maintenance of adequate soil water content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement for precision irrigation would allow efficient supply of water to crops, thereby resulting in minimization of water drainage and contamination of ground water. This research reports on the characterization of spatial and temporal variations in water contents through three different textured soils, such as loam, sandy loam, and loamy sand, when water is applied on the soil surface using an one-line drip irrigation system and the soils are dried after the irrigation stops, respectively. Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30cm depths. Spatial variability in water content for each soil type was strongly influenced by soil textural class. There were big differences in wetting pattern and the rate of downward movement between loam and sandy loam soils, showing that the loam soil had a wider wetting pattern and a slower rate of downward movement than did the sandy loam soil. The wetting pattern in loamy sand soil was not apparent due to a low variability in water content (< 10%) by a lower-water holding capacity as compared to those measured in the loam and sandy loam soils, implying that the rate of water drainage below a depth of 30cm was high. When soils were dried, there were highly exponential relationships between water content and time elapsed after irrigation stops ($r^2$${\geq}$0.98). It was estimated that equilibrium moisture contents for loam, sandy loam, and loamy sand soils would be 17.6%, 6.2%, and 4.2%, respectively.

본 연구에서는 정밀관수를 위한 관수시간, 점적라인 설치 등 관수시스템 설계를 위한 기초 데이터를 얻고자 점적관수 시 토성에 따른 물의 수분함량변화를 공간적, 시간적 변이의 차이를 구명하였다. 20cm의 간격의 노즐로 설치된 1열 점적관을 이용 관수 하였을 경우 양토와 사양토내의 수분은 중심을 따라 대칭 형태를 유지하면서 이동하였으나 수분확산 폭은 양토가 더 넓고 속도가 느린 경향을 나타내었다. 상대적으로 높은 모래성분 함량을 갖는 양질사토의 경우는 낮은 수분 보유력으로 인하여 위치별 수분함량의 변화는 상대적으로 낮았으며 그만큼 물 빠짐정도가 큰 것으로 나타났다. 관수개시점과 종말점을 고려하였을 때 사양토의 경우 20cm 깊이에서 관수개시 30분 후에 수분의 포화가 이루어졌으나 양토와 양질사토의 경우는 약 80분이 소요되어 효율적인 수분공급 측면에서 관수시간은 토성별로 달리해야 하는 것으로 나타났다. 깊이 10cm에서의 시간에 다른 토양수분의 감쇠특성은 지수함수의 형태를 나타내었으며 토양별 안정된 상태에서의 수분함량은 양토, 사양토, 양질사토 각각 17.6%, 6.2%, 4.2%로 예측되어 토성에 따라 잔여수분함량은 차이가 있음을 확인하였다. 토양수분함량과 토양수분퍼텐셜과의 관계를 나타내는 수분특성곡선은 시험 토양의 경우 모두 높은 결정계수를 갖는 지수함수로 근사가 가능하여 수분퍼텐셜을 이용하여 측정하는 재배시스템에서 대응하는 수분함량 예측에 유용한 관계식을 얻었다.

Keywords

References

  1. Fares, A. and A.K. Alva. 2000a. Evaluation of capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an entisol profile. Irrig. Sci 19:57-64 https://doi.org/10.1007/s002710050001
  2. Fares, A. and A.K. Alva. 2000b. Soil water components based on capacitance probes in a sandy soil. Soil Sci. Soc. Am. J. 64:311-318 https://doi.org/10.2136/sssaj2000.641311x
  3. Hur, S.O., S.K. Ha, and J.G. Kim. 2009. Verification of TDR and FDR sensors for volumetric soil water content measurement in sandy loam soil. Korean J. Soil Sci. Fert. 42(2):110-116 (in Korean)
  4. Lee, D.H., K.S. Lee, and Y.C. Chang. 2008. Development of an automatic water control system for greenhouse soil water content management. J. of Biosystems Eng. 33(2):115-213 (in Korean) https://doi.org/10.5307/JBE.2008.33.2.115
  5. Lee, G.Y., S.H. Kim, K.H. Kim, and H.S. Lee. 2005. Analysis of soil moisture recession characteristics on hillslope through the intensive monitoring using TDR. Korean Journal of Agricultural and Forest Meteorology 7(1):79-91. (in Korean)
  6. Roh, H.M., J.P. Kwon, S.H. Kim, and S.H. Yoo. 2000. A numerical method of three-dimensional soil water distribution for drip irrigation management under cropped conditions. J. Korean Soc. Agric. Chem. Biotechnol. 43(2):116-123
  7. Thompson, R.B., M. Gallardo, T. Aguera, L.C. Valdez, and M.D. Fernandez. 2006. Evaluation of the watermark sensor for use with drip irrigated vegetable crops. Irrig. Sci. 24:185-202 https://doi.org/10.1007/s00271-005-0009-5
  8. Yoo, S.H., G.H. Han, B.S. Bae, and M.E. Park. 1999. Monitoring of water content and electrical conductivity in paddy soil profile by time domain reflectometry. J. Korean Soc. Sci. Fert. 32(4):365-374