Geochemical and Isotopic Study of the Kumho River

금호강 하천수의 지구화학 및 동위원소 연구

  • Published : 2009.12.28

Abstract

The Kumho River flows through volcanic and sedimentary rocks at upstream and downstream regions and also through industrial district including dyeing complex before it meets the Nakdong River, and as a result, many factors can influence the geochemistry of river water. The concentrations of dissolved ions generally increased as it flows downstream. The concentrations of cations are in the order of Ca>Na>Mg>K, and those of anions are $HCO_3$>$SO_4$>Cl>$NO_3$. These results show that the weathering of sandstone and shale containing carbonate including calcite caused the enrichment of Ca and $HCO_3$. At first 4 sampling sites, Si contents are relatively high mainly due to the weathering of silicate minerals of volcanic rocks. However, Na and $SO_4$ contents are higher at downstream sites due to the industrial and municipal sewage. Piper diagram also shows that the geochemical patterns changed from Ca-$HCO_3$ to Ca-Cl/Ca-$SO_4$ and Na-Cl/Na-$SO_4$ type. When comparing the samples collected in May and July, the concentrations of dissolved ions in July are generally lower than those in May, which indicates that dilution by precipitation played an important role. In July the relative concentration of Ca increased, indicating that Ca in soils probably from fertilizer were mixed into the river water by precipitation. The river waters are mainly from precipitation. The dissolved ions are mainly from weathering of carbonate minerals and pollutants from municipal sewage and discharged water from industrial complex. The composition of oxygen and deutrium isotope in July showed higher values, which is contrary to the amount effect, maybe due to Youngchon Dam. The nitrogen isotope showed lower values in July than those in May, which can be interpreted to indicate mixing of nitrate from soils and fertilizer in the cultivated land by the heavy rain. The isotope composition of nitrate increased downstream, indicating that the influence of sewage and animal manure also increased downstream.

금호강의 하천수는 상류의 화산암 지대와 하류의 퇴적암 지대를 지나며 낙동강과 합류하기 전 대구의 염색공단과 같은 산업시설을 유하하여 지구화학적으로 다양한 영향을 받는다. 금호강 하천수는 상류에서 하류로 갈수록 풍화와 오염물질의 유입에 의해 전반적인 용존 이온의 증가를 보여주고 있다. 하천수에 용해된 양이온은 Ca>Na>Mg>K 순으로, 그리고 음이온은 $HCO_3$>$SO_4$>Cl>$NO_3$ 순으로 높게 나타났다. 이는 방해석과 같은 탄산염암을 함유하고 있는 사암과 셰일의 풍화에 의하여 Ca와 $HCO_3$가 다른 원소들보다 우세하게 나타난 것으로 보인다. 그러나 하류지역에서는 공단 폐수와 생활 하수의 영향으로 Na와 $SO_4$가 Ca와 $HCO_3$보다 높게 나타났다. 또한 상류 시료 채취점 네 곳에서는 Si의 함량이 상대적으로 높게 나타났는데 이는 화산암 내의 규산염광물의 풍화의 의한 것으로 해석된다. 하천수의 화학적 유형을 알기 위하여 파이퍼도에 도시해본 결과 금호강은 상류에서 하류로 흘러감에 따라 Ca-$HCO_3$, Ca-Cl/Ca-$SO_4$, Na-Cl/Na-$SO_4$ 유형 순으로 나타났다. 5월 갈수기와 비교하였을 경우 7월 우기시 용존 이온의 농도가 전반적으로 감소하였는데, 이는 강우에 의한 희석의 영향을 받은 것으로 해석된다. 그러나 7월의 경우 Ca 함량이 상대적으로 증가하였는데, 이는 토양내 Ca과 비료에서 유래된 Ca가 빗물에 의하여 강물에 섞인 결과로 해석된다. 금호강 하천수의 물은 주로 강수에서 직접 기인하며 용존 이온들은 탄산염 광물의 풍화와 생활 하수, 공장 폐수와 같은 오염물질에 의해서 공급되는 것으로 보인다. 산소와 수소 동위원소의 조성은 7월의 경우 5월에 비하여 일반적으로 높게 나타났는데 이것은 아마도 상류에 있는 영천댐의 영향일 것으로 생각된다. 질소 동위원소의 경우 전제적으로 7월의 값들이 5월에 비하여 낮은 것으로 나타났다. 이는 7월의 다량의 강수에 의하여 토양내의 질산염이나 경작지의 질산염 비료 등이 혼입되어서 나타난 결과로 해석된다. 전체적으로 하류로 가면서 질소 동위원소의 값은 증가함을 보여 오수와 가축분뇨 등의 영향이 하류에서 증가함을 보인다.

Keywords

References

  1. Barth, J.A.C. and Veizer, J. (2004) Water mixing in a St.Lawrence river embayment to outline potentialsources of pollution. Appl. Geochem., v.19, p.1637-1641 https://doi.org/10.1016/j.apgeochem.2004.02.005
  2. Chen, J., Wang, F., Xia, X. and Zhang, L. (2002) Major elementchemistry of the Changjiang (Yangtze River).Chem. Geol., v.187, p.231-255 https://doi.org/10.1016/S0009-2541(02)00032-3
  3. Cortecci, G., Dinelli, E., Adorni-Braccesi, A. and LaRuffa, G. (2002) Natural and anthropogenic SO4sources in the Arno river catchment, northern Tuscany,Italy: a chemical and isotopic reconnaissance.Appl. Geochem., v.17, p.79-92 https://doi.org/10.1016/S0883-2927(01)00100-7
  4. Dalai, T.K., Krishnaswami, S. and Sarin, M.M. (2002)Major ion chemistry in the headwaters of the Yamunariver system: Chemical weathering, its temperaturedependence and CO2 consumption in the Himalaya.Geochim. Cosmochim. Acta, v.66, p.3397-3416 https://doi.org/10.1016/S0016-7037(02)00937-7
  5. Drever, J.I. (1997) The Geochemistry of Natural Waters,Surface and Groundwater Environments, 3rd ed. Prentice Hall
  6. Gaillardet, J., Dupre, B., Louvat, P. and Allegre, C.J.(1999) Global silicate weathering and CO2 consumptionrates deduced from the chemistry of large rivers.Chem. Geol., v. 159, p. 3-30 https://doi.org/10.1016/S0009-2541(99)00031-5
  7. Galy, A. and France-Lanord, C. (1999) Weathering processesin the Ganges-Brahmaputra basin and the riverinealkalinity budget. Chem. Geol., v.159, p.31-60 https://doi.org/10.1016/S0009-2541(99)00033-9
  8. Huh, Y.S., Tsoi, Mai-Yin, Zaitsev, A. and Edmond, J.M.(1998a) The fluvial geochemistry of the rivers ofEastern Siberial: . Tributaries of the Lena River drainingthe sedimentary platform of the Siberian Craton.Geochim. Cosmochim. Acta, v.62 p.1657-1676 https://doi.org/10.1016/S0016-7037(98)00107-0
  9. Huh, Y.S., Panteleyev, G., Babich, D., Zaitsev, A. andEdmond, J.M. (1998b) The fluvial geochemistry of therivers of Eastern Siberia: . Tributaries of the Lena,Omoloy, Yana, Indigirka, Kolyma, and Anadyr drainingthe collisional/accretionary zone of the Verkhoyanskand Cherskiy ranges. Geochim. Cosmochim. Acta,v.62, p.2053-2075 https://doi.org/10.1016/S0016-7037(98)00127-6
  10. Huh Y.S. and Edmond, J.M. (1999) The fluvial geochemistryof the rivers of Eastern Siberia: . Tributaries ofthe Lena and Anabar draining the basement terrain ofthe Siberian Craton and the Trans-Baikal Highlands.Geochim. Cosmochim. Acta, v.63, p.967-987 https://doi.org/10.1016/S0016-7037(99)00045-9
  11. Kim, K., Lee, J.S., Oh, C.W., Hwang, G.S., Kim, Y. andLee, K.S. (2000) A hydrogeochemical study on thestreams influenced by effluents from a wastewatertreatment plant. J. Geol. Soc. Korea, v.36, p.137-152
  12. Kim, K., Lee, J.S., Oh, C.W., Hwang, G.S., Kim, J., Yeo,S., Kim, Y., and Park, S. (2002) Inorganic chemicals inan effluent-dominated stream as indicators for chemicalreactions and stream flows. J. Hydrol., 264, 147-156 https://doi.org/10.1016/S0022-1694(02)00074-4
  13. Kim, K.H. and Lee, S.H. (2002) Oxygen and hydrogenisotopic compositions of stream waters in the HanRiver basin. Eco. Environ. Geol., v.35, p.113-120
  14. Kim, K.H. and Shim, E.S. (2001) Geochemical characteristicsand origin of dissolved ions in the Han Riverwater. Econ. Environ. Geol., v.34, p.539-553
  15. Koh, I.S., Lee, Y.T. and Kim, J.G. (1994) Sandsone disgenesisof Upper Kyungsang Supergourp(Cretaceous)in Kyungsang Basin. Korean J. Petrol. Geol., v.2, p.19-31
  16. Lee, K.S., Bong, Y.S., Lee, D., Kim, Y. and Kim, K. (2008)Tracing the sources of nitrate in the Han River watershedin Korea, using $\delta^{15}$N-$NO_{3}$−and $\delta^{18}$O-$NO_{3}$−values.Sci. Total Environ., v.395, p.117-124 https://doi.org/10.1016/j.scitotenv.2008.01.058
  17. Lee, K.S. and Chang, B.U. (1994) Oxygen and hydrogenisotopic composition of precipitation in Taejeon andSeoul, Korea. J. Geol. Soc. Korea, v.30, p.475-481
  18. Lee, K.S. and Lee C.B. (1999) Oxygen and hydrogen isotopiccomposition of precipitation and river waters inSouth Korea. J. Geol. Soc. Korea, v.35, p.73-84
  19. Lee, K.S., Ryu, J.S., Ahn, K.H., Chang, H.W. and Lee, D.(2007) Factors controlling carbon isotope ratios of dissolvedinorganic carbon in two major tributaries of theHan River, Korea. Hydrol. Proc., v.21, p.500-509 https://doi.org/10.1002/hyp.6254
  20. Mayer, B., Boyer, E.W., Goodal, C., Jaworski, N.A., VanBreemen, N., Howarth, R. W., Seitzinger, S., Billen,G., Lajtha, K., Nadelhoffer, K., can Dam, D., Hetling,L.J., Nosal, M., Paustian, K. (2002) Sources of nitratein rivers draining sixteen watersheds in the northeasternU.S.: Isotopic constraints. Biogeochem., v.57/58, p.171-197
  21. Millot, R., Gaillardet, J., Dupre, B. and Allegre, C.J.(2003) Northern latitude chemical weathering rates:Clues from the Mackenzie River Basin, Canada.Geochim. Cosmochim. Acta, v.67, p.1305-1329 https://doi.org/10.1016/S0016-7037(02)01207-3
  22. Panno, S.V., Hackley, K.C., Kelly, W.R., and Hwang, H.H.(2006) Isotopic evidence of nitrate sources and denitrificationin the Mississippi river, Illinois. J. Environ.Qual., v.35, p.494-504
  23. Rock, L. and Mayer, B. (2006) Tracing nitrates and sulphatesin river basins using isotope techniques. WaterSci. Tech., v.53, p.209-217
  24. Roy, S., Gaillardet, J. and Allegre, C.J. (1999) Geochemistryof dissolved and suspended loads of the SeineRiver, France: anthropogenic impact, carbonate andsilicate weathering. Geochim. Cosmochim. Acta, v.63,p.1277-1292 https://doi.org/10.1016/S0016-7037(99)00099-X
  25. Ryu, J.S., Lee, K.S. and Chang, H.W. (2007) Hydrogeochemicaland isotopic investigations of the HanRiver basin, South Korea. J. Hydrol., v.345, p.50-60 https://doi.org/10.1016/j.jhydrol.2007.08.001
  26. Sarin, M.M., Krishnaswami, S., Dilli, K., Somayajulu,B.L.K. and Moore, W.S. (1989) Major ion chemistry ofthe Ganga-Brahmaputra river system: weatheringprocesses and flux to the Bay of Bengal. Geochim.Cosmochim. Acta, v.53, p.997-1009 https://doi.org/10.1016/0016-7037(89)90205-6
  27. Seo, H.Y. and Kim, K.H. (1997) The geochemical charateristicsof the river water in the Han River drainagebasin. J Korean Soc Groudwater Environ., v.4, p.130-143
  28. Stallard, R.F. and Edmond, J.M. (1983) Geochemistry ofthe Amazone 2. The influence of geology and weatheringenvironment on the dissolved load. J. Geophys.Res., v.88, p.9671-9688 https://doi.org/10.1029/JC088iC14p09671
  29. Zhang, J., Huang, W.W., Letolle, R. and Jusserand, C.(1995) Major element chemistry of the Huanghe (YellowRiver), China-weathering processes and chemicalfluxes, J. Hydrol. v.168, p.173-223 https://doi.org/10.1016/0022-1694(94)02635-O