DOI QR코드

DOI QR Code

Seasonal Variations of Evapotranspiration Observed in a Mixed forest in the Seolmacheon Catchment

설마천 유역의 혼효림에서 관측된 증발산의 계절변화

  • 권효정 (연세대학교 대기과학과/지구환경연구소) ;
  • 이정훈 (유량조사사업단) ;
  • 이연길 (유량조사사업단) ;
  • 이진원 (유량조사사업단) ;
  • 정성원 (유량조사사업단) ;
  • 김준 (연세대학교 대기과학과/지구환경연구소)
  • Published : 2009.03.30

Abstract

The importance of securing water resources and their efficient management has attracted more attention recently due to water deficit. In water budget analysis, however, evapotranspiration(${\lambda}E$) has been approximated as the residual in the water balance equation or estimated from empirical equations and assumptions. To minimize the uncertainties in these estimates, it is necessary to directly measure ${\lambda}E$. In this study, using the eddy covariance technique, we have measured ${\lambda}E$ in a mixed forest in the Seolmacheon catchment in Korea from September 2007 to December 2008. During the growing season(May-July), ${\lambda}E$ in this mixed forest averaged about $2.2\;mm\;d^{-1}$, whereas it was on average $0.5\;mm\;d^{-1}$ during the non-growing season in winter. The annual total ${\lambda}E$ in 2008 was $581\;mm\;y^{-1}$, which is about 1/3 of the annual precipitation of 1997 mm. Despite the differences in the amount and frequency of precipitation, the accumulated ${\lambda}E$ during the overlapping period(i.e., September to December) for 2007 and 2008 was both ${\sim}110$ mm, showing virtually no difference. The omega factor, which is a measure of decoupling between forest and the atmosphere, was on average 0.5, indicating that the contributions of equilibrium ${\lambda}E$ and imposed ${\lambda}E$ to the total ${\lambda}E$ were about the same. The results suggest that ${\lambda}E$ in this mixed forest was controlled by various factors such as net radiation, vapor pressure deficit, and canopy conductance. In this study, based on the direct measurements of ${\lambda}E$, we have quantified the relative contribution of ${\lambda}E$ in the water balance of a mixed forest in the Seolmacheon catchment. In combination with runoff data, the information on ${\lambda}E$ would greatly enhance the reliability of water budget analysis in this catchment.

물 부족으로 인해 수자원의 확보와 효율적인 관리의 중요성이 커지고 있음에도 불구하고, 물 수지 분석에서 증발산은 다른 성분에 비해 직접 관측이 어려워 물수지 방정식으로부터 어림되거나 단순한 가정이나 경험식으로부터 추정된다. 그러나 이러한 방법들은 오차가 커서 증발산의 신뢰도를 높이려면 직접 관측이 필요하다. 이 연구에서는 설마천 유역의 혼효림의 증발산을 정량화하기위해 2007년 9월부터 2008년 12월까지 에디 공분산 방법을 사용하여 증발산을 직접 측정하였다. 혼효림의 증발산은 성장기(5-7월)에는 평균 $2.2mm\;d^{-1}$, 비성장기인 겨울에는 $0.5mm\;d^{-1}$였다. 2008년 한 해동안의 총 증발산량은 $581mm\;y^{-1}$로 연 강수량(1997mm)의 약 1/3을 차지하였다. 2007년과 2008년에 관측이 겹치는 기간(9-12월)동안 적산된 증발산 총량은 2008년 가을의 강수량과 강수빈도가 2007년의 같은 기간에 비해 적었음에도 불구하고 두 기간 모두${\sim}110mm$로 다르지 않았다. 산림과 대기간의 분리(decoupling) 정도를 나타내는 오메가 인자는 평균 0.5로서 평형증발산과 부과증발산이 전체 증발산에 기여하는 정도가 크게 다르지 않았다. 이는 증발산이 순복사, 포차, 기공전도도 등에 의해 골고루 영향을 받고 있음을 의미한다. 본 연구에서는 실측에 근거한 증발산 자료를 토대로 설마천 유역의 혼효림에서 증발산이 물수지에서 차지하는 기여도를 조사하였고, 향후 유출량과 함께 사용될때 설마천 산림유역의 물수지 분석의 신뢰도을 향상시킬 것으로 기대된다.

Keywords

References

  1. Alvai, N., J. S. Warland, and A. A. Berg, 2006: Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach. Agricultural and Forest Meteorology 141, 57-66 https://doi.org/10.1016/j.agrformet.2006.09.011
  2. An, J. G., and T. H. Kim, 2006: Water balance of a small catchment in the subalpine grassland of Mt. Halla, Southern Korea. Journal of the Korean Geographical Society 41, 404-417
  3. Baldocchi, D., B. Hicks, and T. Meyers. 1988: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69, 1331-1340 https://doi.org/10.2307/1941631
  4. Byun, H. R., S. J., S. Morid, K. S., S. M., Lee, and D. W. Kim, 2008: Study on the periodicities of droughts in Korea. Asia-Pacific Journal of Atmospheric Sciences 44, 417-441
  5. Chou, H. G., 1972: A statistical study on evapotranspiration of paddy-field. Korean Journal of the Atmospheric Sciences 8, 23-29. (in Korean with English abstract)
  6. Chung, H. W., 1985: Establishment of estimation methods for crop water requirement. Ministry of Agriculture and Fisheries
  7. Falge E., D., Baldocchi, R. J. Olson, P. Anthoni, M. Aubinet, C. Bernhofer, G. Burba, R. Ceulemans, R. Clement, H. Dolman, A. Granier, P. Gross, T. Grünwald, D. Hollinger, N.-O. Jensen, G. Katul, P. Keronen, A. Kowalski, C. Ta Lai, B. E. Law, T. Meyers, J. Moncrieff, E. Moors, J. W. Munger, K. Pilegaard, Ü. Rannik, C. Rebmann, A. Suyker, J. Tenhunen, K. Tu, S. Verma, T. Vesala, K. Wilson, and S. Wofsy, 2001: Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology 107, 43-69 https://doi.org/10.1016/S0168-1923(00)00225-2
  8. Falkenmark, M, and J. Rockstr$\tilde{o}$m, 2006: The New blue and green water paradigm: breaking new ground for water resources planning and management. Journal of Water Resources Planning and Management 132, 129-32 https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(129)
  9. Hong, J., J. Kim, D. Lee, and J. H. Lim, 2008: Estimation of the storage and advection effects on H2O and CO2 exchanges in a hilly KoFlux forest catchment. Water Resources Research 44, W01426, doi:10.1029/2007WR006408
  10. Hong, J. K., H. Kwon, and J. Kim, 2009: Measurement of evapotranspiration by eddy-covariance technique. Sustainable water resource research center, 136pp (in submission)
  11. Jarvis, P. G., and K.G. McNaughton, 1986: Stomatal control of transpiration scaling up from leaf to region. Advances in Ecological Research 15, 1-49 https://doi.org/10.1016/S0065-2504(08)60119-1
  12. Kang, M. S., 1984: The trend of the climatic change of South Korea based on Thornthwaite's method. Geography Research 9, 507-519. (in Korean with English abstract)
  13. Kim, J., 2007: KoFlux 2006 Synthesis: HydroKorea and Carbo Korea Forward. Journal of Korean Agricultural and Forest Meteorology 9, 71-74
  14. Kim, J. D. Lee, J. Hong, S. Kang, S. J. Kim, S. K. Moon, J. H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B. Lee, B. L. Lee, and S. Kim, 2006: HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecological Research 21, 881-889 https://doi.org/10.1007/s11284-006-0055-3
  15. Kim, N. W., and C. K. Kim, 2004: Comparison of Penman-Monteith method and Morton CARE method for estimating areal evapotranspiration. 2004 Korea Water Resources Association Conference, Incheon, Korea, 14-15 May, 2004. (in Korean with English abstract)
  16. Korea Institute of Construction Technology, 2006: Operation and research on the hydrological characteristics of the experimental catchment. Korea Institute of Construction Technology 2006-062 182pp. (in Korean)
  17. Kwon, H., S. Park, M. Kang, J. Yoo, R. Yuan, and J. Kim, 2007: Quality control and assurance of eddy covariance data at the two KoFlux sites. Korean Journal of Agricultural Forest Meteorology 9, 260-267. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2007.9.4.260
  18. Kwon, W. T., 2009: '08/'09 Current drought conditions and its prospect. 2009 Drought Symposium, Seoul, Korea, 11 March, 2009. (in Korean)
  19. Lee, B. W., and B. C. Kim, 1990: Estimation of actual evapotranspiration over paddy rice field. Journal of Korean Society of Crop Science 35, 518-524. (in Korean with English abstract)
  20. Lee, G. H., 1973: On the evapotranspiration model derived from the meteorological elements and Penman equation. Magazine of Korea water resources association 6, 6-11. (in Korean with English abstract)
  21. Oki, T., and S. Kanae, 2006: Global Hydrologic cycle and world water resources. Science 313, 1068-1072 https://doi.org/10.1126/science.1128845
  22. Park, S. B., 2009: Interpreting evapotranspiration of forest and cropland in Korea based on the radiatively coupled Penman-Monteith combination equation. M. S. Thesis, Yonsei University, Seoul, Korea. (in Korean with English abstract)
  23. Raupach, M. R., 2001: Combination theory and equilibrium evaporation. Quarterly Journal of the Royal Meteorological Society 127, 1149-1181 https://doi.org/10.1002/qj.49712757402
  24. Young, P. C., C. J. Taylor, W. Tych, D. J. Pedregal, and P. G. McKenna, 2004: The captain toolbox. Centre for Research on Environmental Systems and Statistics. Lancaster University. United Kindgom
  25. http://www.es.lancs.ac.uk/cres/captain/ (2008. 4.8)
  26. http://www.fluxnet.ornl.gov/ (2009. 3. 5)
  27. http://kict.datapcs.co.kr/catchment/main.htm/(2009. 2.10)

Cited by

  1. Validation of Net Radiation Measured from Fluxtower Based on Eddy Covariance Method: Case Study in Seolmacheon and Cheongmicheon Watersheds vol.46, pp.2, 2013, https://doi.org/10.3741/JKWRA.2013.46.2.111
  2. Temporal stability and variability of field scale soil moisture on mountainous hillslopes in Northeast Asia vol.207-208, 2013, https://doi.org/10.1016/j.geoderma.2013.05.007
  3. Comparison of hydrological responses by two different satellite remotely sensed leaf area indices in a mountainous watershed of South Korea vol.14, pp.5, 2010, https://doi.org/10.1007/s12205-010-0882-1
  4. Assessment of Outgoing Longwave Radiation using COMS : Cheongmi and Sulma Catchments vol.46, pp.5, 2013, https://doi.org/10.3741/JKWRA.2013.46.5.465
  5. Landuse oriented Water Balance Analysis Method by the Hydrological Model BAGLUVA based on Soil and Vegetation vol.43, pp.4, 2015, https://doi.org/10.9715/KILA.2015.43.4.098
  6. The Latent Heat Exchange on the Ground vol.20, pp.8, 2011, https://doi.org/10.5322/JES.2011.20.8.1061
  7. Evaluation of mixed forest evapotranspiration and soil moisture using measured and swat simulated results in a hillslope watershed vol.18, pp.1, 2014, https://doi.org/10.1007/s12205-014-0193-z
  8. Outlier Detection and Replacement for Vertical Wind Speed in the Measurement of Actual Evapotranspiration vol.34, pp.5, 2014, https://doi.org/10.12652/Ksce.2014.34.5.1455
  9. Evaluation of statistical gap fillings for continuous energy flux (evapotranspiration) measurements for two different land cover types vol.29, pp.8, 2015, https://doi.org/10.1007/s00477-015-1101-x
  10. Evaluation of MODIS-derived Evapotranspiration According to the Water Budget Analysis vol.48, pp.10, 2015, https://doi.org/10.3741/JKWRA.2015.48.10.831
  11. Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model vol.46, pp.6, 2013, https://doi.org/10.3741/JKWRA.2013.46.6.569
  12. Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method vol.28, pp.4, 2012, https://doi.org/10.7780/kjrs.2012.28.4.7
  13. Assessment of Solar Insolation from COMS: Sulma and Cheongmi Watersheds vol.29, pp.1, 2013, https://doi.org/10.7780/kjrs.2013.29.1.13
  14. Evaluation of Forest Watershed Hydro-Ecology using Measured Data and RHESSys Model -For the Seolmacheon Catchment- vol.45, pp.12, 2012, https://doi.org/10.3741/JKWRA.2012.45.12.1293
  15. COMS-Based Retrieval of Daily Actual Evapotranspiration over Korea vol.2017, 2017, https://doi.org/10.1155/2017/2151809
  16. Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.227
  17. Evaluation of geostationary satellite (COMS) based Priestley–Taylor evapotranspiration vol.159, 2015, https://doi.org/10.1016/j.agwat.2015.05.017
  18. Error Correction of Real-time Situation Recognition using Smart Device vol.19, pp.9, 2018, https://doi.org/10.9728/dcs.2018.19.9.1779
  19. Evaluation of the effects of climate change on forest watershed hydroecology using the RHESSys model: Seolmacheon catchment pp.1611-2504, 2019, https://doi.org/10.1007/s10333-018-00683-1