DOI QR코드

DOI QR Code

Heat of hydration characteristics on high-performance concrete for large dimensional tunnel linings

대단면 터널 라이닝 적용 고성능 콘크리트의 수화열 특성

  • 민경환 (고려대학교 건축. 사회환경공학부) ;
  • 정형철 (고려대학교 건축. 사회환경공학부) ;
  • 양준모 (고려대학교 건축. 사회환경공학부) ;
  • 윤영수 (고려대학교 건축. 사회환경공학부)
  • Published : 2009.03.27

Abstract

In this study, experiments of development and application of 50 MPa high-performance concrete are performed for large dimensional tunnel linings. In order to produce 50MPa high-performance concrete, eight optimal mixtures replacing with fly ash and ground granulated blast furnace slag up to 50 percent of type I Portland cement were selected then tests for mechanical properties and simple adiabatic temperature rise tests were carried out. And in order to assess the quantitative characteristics of heat of hydrations of developed mixtures, three mixtures that the type I Portland cement (OPC) and each one mixture of binary and ternary mixtures (BS30, F15S35) were reselected, then the adiabatic temperature rise tests and mock-up tests were performed. Consequently, the comparisons between the results of mock-up tests and finite element analysis can be enhanced the reliability of analyzing routines of thermal behaviours of the developed high-performance concrete.

본 연구는 대형 대단면 터널 라이닝 구조물에 적용하기 위해 50 MPa급 고성능 콘크리트의 개발 및 적용을 위한 실험을 수행하였다. 이를 위해 플라이애쉬와 고로슬래그미분말을 1종 시멘트 단위량의 50%까지 치환한 8종의 배합을 선정하여, 8종의 배합의 역학적 특성에 관한 실험과 간이 단열온도 상승실험을 실시하였다. 또한 정량적인 평가를 위해 8종의 배합 중 1종 시멘트만을 사용한 배합(OPC) 및 2성분계 배합과 3성분계 배합중 각각 1종(BS30, F15S35)을 재선정하여 단열온도 상승실험과 Mock-up 실험을 수행하였다. 실물 부재 크기의 시험체의 수화열 측정결과는 유한요소해석과 비교하여 해석루틴의 신뢰도 향상을 기대할 수 있었다.

Keywords

References

  1. 건설교통부 (1996), 터널표준시방서.
  2. 대한건축학회 (2006), 건축공사표준시방서.
  3. 민경환, 이태규, 정해문, 윤영수 (2007), 프리스트레스트 콘크리트 교량용 60 Mpa급 고강도 콘크리트의 수화열 특성, 대한토목학회 2007년도 정기학술대회논문집, pp. 416-419.
  4. 쌍용양회공업(주) (2005), 매스콘크리트의 온도균열 제어방안, 시멘트.콘크리트기술자료집, 쌍용양화(주) 기술연구소, pp. 2-5.
  5. 한국콘크리트학회 (2003), 콘크리트표준시방서.
  6. 한국콘크리트학회 (2007), 콘크리트구조설계기준.
  7. Barnett, S.J., Soutsos, M.N., Millard, S.G. and Bungey, J. H. (2006), Strength Developrnent of Mortars Containing Ground Granulated Blast-furnace Slag: Effect of Curing Temperature and Determination of Apparent Activation Energies, Cem. Con. Res., Vol. 36, No.3, pp. 434-440. https://doi.org/10.1016/j.cemconres.2005.11.002
  8. Bentz, D.P. (2008), A Review of Early-age Properties of Cement-based Materials, Cem. Con. Res., Vol. 38, No. 2, pp. 196-204. https://doi.org/10.1016/j.cemconres.2007.09.005
  9. Boniface, A. (1999), Some Technical Lessons Learnt from Construction of the Lesotho Highlands Water Project Transfer Tunnel, Tunn. Undrg. Spa. Tech., Vol. 14, No. 1, pp. 29-35.
  10. Bouzouzaa, N. and Malhotra, V.M. (2001), Performance of Lab-Produced HVFA-Blended Cements in Concrete, Con. Int'l, Vol. 23, No.4, pp. 31-35.
  11. Carrasquillo, R.L., Nilson, A.H. and Slate, F.O. (1981), Properties of High Strength Concrete Subject to Short-Term Loads, J. Proc. ACI, Vol. 78, No.3, pp. 171-178.
  12. Jones, M.R., and McCarthy, A. (2006), Heat of Hydration in Foamed Concrete: Effect of Mix Constituents and Plastic Density, Cem. Con. Res., Vol. 36, No.6, pp. 1032-1041. https://doi.org/10.1016/j.cemconres.2006.01.011
  13. Kovler, K., Schamban, I., Igarashi, S. and Bentur, A. (1999), Influence of Mix Proportions and Curing Conditions on Tensile Splitting Strength of High Strength Concretes, Mate. Stru., Vol. 32, No.7, pp. 500-505. https://doi.org/10.1007/BF02481634
  14. Larrard, F.D. and Sedran, T. (2002), Mixture-proportioning of High-performance Concrete, Cem. Con. Res., Vol. 32, No. 11, pp. 1699-1704. https://doi.org/10.1016/S0008-8846(02)00861-X
  15. Liwua, M. and Min, D. (2006), Thermal Behavior of Cement Matrix with High-volume Mineral Admixtures at Early Hydration Age, Cem. Con. Res., Vol. 36, No. 10, pp. 1992-1998. https://doi.org/10.1016/j.cemconres.2006.07.002
  16. Mehta, P.K. and Monteiro, P.J.M (2006), Concrete: Structure, Properties, and Materials, 3rd Ed., McGrow-Hill, NY., pp. 213-222.
  17. Monnikhof, R.A.H., Edelenbos, J., van der Hoeven, F. and van der Krogt, R.A.A (1999), The New Underground Planning Map of the Netherlands: a Feasibility Study of the Possibilities of the Use of Underground Space, Tunn. Undrg. Spa. Tech., Vol. 14, No.3, pp. 341-347. https://doi.org/10.1016/S0886-7798(99)00049-8
  18. Rienzo, FD., Oreste, P. and Pelizza, S. (2008), Subsurface Geological-Geotechnical Modelling to Sustain Underground Civil Planning, Eng. Geol., Vol. 96, No. 3-4, pp. 187-204. https://doi.org/10.1016/j.enggeo.2007.11.002
  19. Romer, M., Holzer, L. and Pfiffner, M. (2003), Swiss Tunnel Structural: Concrete Damage by Formation of Thaumasite, Cem. Con. Comp., Vol. 25, No.8, pp. 1111-1117. https://doi.org/10.1016/S0958-9465(03)00141-0
  20. Schindler, A.K. and Folliard, K.J. (2005), Heat of Hydration Models for Cementitious Materials, ACI Mate. J., Vol. 102, No. 1, pp. 24-33.
  21. Schutter, G.D. (1999), Hydration and Temperature Development of Concrete Made with Blast-furnace Slag Cement, Cem. Con. Res., Vol. 29, No.1, pp. 143-149. https://doi.org/10.1016/S0008-8846(98)00229-4
  22. Wang, J.C. and Yan, P.Y. (2006), Influence of Initial Casting Temperature and Dosage of Fly Ash on Hydration Heat Evolution of Concrete under Adiabatic Condition, J. Therm. Anal. Calo., Vol. 85, No.3, pp. 755-760. https://doi.org/10.1007/s10973-005-7141-6
  23. Yuan, Y., Jiang, X. and Lee, C.F. (2000), Tunnel Water-proofing Practice in China, Tunn. Undrg. Spa. Tech., Vol. 15, No.2, pp. 227-233. https://doi.org/10.1016/S0886-7798(00)00048-1