DOI QR코드

DOI QR Code

Adaptive tuned dynamic vibration absorbers working with MR elastomers

  • Zhang, X.Z. (School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong) ;
  • Li, W.H. (School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong)
  • Received : 2007.10.29
  • Accepted : 2008.06.06
  • Published : 2009.09.25

Abstract

This paper presents the development of a new Adaptive Tuned Dynamic Vibration Absorber (ATDVA) working with magnetorheological elastomers (MREs). The MRE materials were fabricated by mixing carbonyl iron particles with silicone rubber and cured under a strong magnetic field. An ATDVA prototype using MRE as an adaptable spring was designed and manufactured. The MRE ATDVA worked in a shear mode and the magnetic field was generated by a magnetic circuit and controlled through a DC power supply. The dynamic performances or the system transmissibility at various magnetic fields of the absorber were measured by using a vibration testing system. Experimental results indicated that this absorber can change its natural frequency from 35Hz to 90Hz, 150% of its basic natural frequency. A real time control logic is proposed to evaluate the control effect. The simulation results indicate that the control effect of MRE ATDVA can be improved significantly.

Keywords

References

  1. Bellan, C. and Bossis, G. (2002), "Field dependence of viscoelastic properties of MR elastomers", Int. J. Mod. Phys. B, 16(17&18), 2447-2453. https://doi.org/10.1142/S0217979202012499
  2. Davis, C.L. and Lesieutre, G.A. (2000), "An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness", J. Sound Vib., 232(3), 601-617. https://doi.org/10.1006/jsvi.1999.2755
  3. Deng, H.X., Gong, X.L. and Wang, L.H. (2006), "Development of an adaptive tuned vibration absorber with magnetorheological elastomer", Smart Mater. Struct., 15(5), N111-N116. https://doi.org/10.1088/0964-1726/15/5/N02
  4. Ginder, J.M., Clark, S.M., Schlotter, W.F. and Nichols, M.E. (2002), "Magnetostrictive phenomena in magnetorheological elastomers", Int. J. Mod. Phys. B, 16(17&18), 2412-2418. https://doi.org/10.1142/S021797920201244X
  5. Gong, X.L., Zhang, X.Z. and Zhang, P.Q. (2005), "Fabrication and characterization of isotropic magnetorheological elastomers", Polym. Test., 24(3), 324-329. https://doi.org/10.1016/j.polymertesting.2004.11.003
  6. Lee, E.C., Nian, C.Y. and Tarng, Y.S. (2001), "Design of a dynamic vibration absorber against vibrations in turning operations", J. Mater. Process. Tech., 108, 278-285. https://doi.org/10.1016/S0924-0136(00)00836-0
  7. Li, W.H. and Du, H. (2002), "Nonlinear rheological behavior of magnetorheological fluids: step-strain experiments", Smart Mater. Struct., 11, 209-217. https://doi.org/10.1088/0964-1726/11/2/304
  8. Li, W.H., Du, H. and Guo, N.Q. (2004), "Dynamic behavior of MR suspensions at moderate flux densities", Mater. Sci. Eng. A, 371, 9-15. https://doi.org/10.1016/S0921-5093(02)00932-2
  9. Liu, K. and Liu, J. (2005), "The damped dynamic vibration absorbers: revisited and new result", J. Sound Vib., 284, 1181-1189. https://doi.org/10.1016/j.jsv.2004.08.002
  10. Liu, K. and Liu, J. (2005), "The damped dynamic vibration absorbers: revisited and new result", J. Sound Vib., 284, 1181-1189. https://doi.org/10.1016/j.jsv.2004.08.002
  11. Lokander, M. and Stenberg, B. (2003), "Performance of isotropic magnetorheological rubber materials", Polym. Test., 22(3), 245-251. https://doi.org/10.1016/S0142-9418(02)00043-0
  12. Sun, J.Q., Jolly, M.R. and Norris, M.A. (1995), "Passive, adaptive, and active tuned vibration absorbers-a survey", J. Mech. Design, 117B, 234-242.
  13. Williams, K.A., Chiu, G.T.C. and Bernhard, R.J. (2005), "Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber", J. Sound Vib., 280, 211-234. https://doi.org/10.1016/j.jsv.2003.12.040
  14. Wu, Z. and Soong, T.T. (1996), "Modified bang-bang control law for structural control implementation", J. Eng. Mech. ASCE, 122(8), 771-777. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(771)
  15. Zhou, G.Y. (2004), "Complex shear modulus of a magnetorheological elastomer", Smart Mater. Struct., 13, 1203-1210. https://doi.org/10.1088/0964-1726/13/5/024

Cited by

  1. Development of an MRE adaptive tuned vibration absorber with self-sensing capability vol.24, pp.9, 2015, https://doi.org/10.1088/0964-1726/24/9/095012
  2. An adaptive tuned vibration absorber based on multilayered MR elastomers vol.24, pp.4, 2015, https://doi.org/10.1088/0964-1726/24/4/045045
  3. Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields vol.20, pp.12, 2011, https://doi.org/10.1088/0964-1726/20/12/127001
  4. Performance of a semi-active/passive integrated isolator based on a magnetorheological elastomer and spring vol.26, pp.9, 2017, https://doi.org/10.1088/1361-665X/aa741d
  5. Study of PDMS based magnetorheological elastomers vol.412, 2013, https://doi.org/10.1088/1742-6596/412/1/012038
  6. A new approach for modeling of magnetorheological elastomers vol.27, pp.8, 2016, https://doi.org/10.1177/1045389X15615966
  7. Principle, modeling, and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles vol.28, pp.16, 2017, https://doi.org/10.1177/1045389X16672731
  8. Investigation on the phase-based fuzzy logic controller for magnetorheological elastomer vibration absorber vol.28, pp.6, 2017, https://doi.org/10.1177/1045389X16657417
  9. State observation–based control algorithm for dynamic vibration absorbing systems featuring magnetorheological elastomers: Principle and analysis vol.28, pp.18, 2017, https://doi.org/10.1177/1045389X17692047
  10. A state-of-the-art review on magnetorheological elastomer devices vol.23, pp.12, 2014, https://doi.org/10.1088/0964-1726/23/12/123001
  11. The design of an active–adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance vol.20, pp.7, 2011, https://doi.org/10.1088/0964-1726/20/7/075015
  12. Fabrication and characterization of PDMS based magnetorheological elastomers vol.22, pp.5, 2013, https://doi.org/10.1088/0964-1726/22/5/055035
  13. Study of magnetorheology and sensing capabilities of MR elastomers vol.412, 2013, https://doi.org/10.1088/1742-6596/412/1/012037
  14. Fabrication and characterisation of anisotropic magnetorheological elastomer with 45° iron particle alignment at various silicone oil concentrations vol.29, pp.2, 2018, https://doi.org/10.1177/1045389X17704071
  15. MRE Properties under Shear and Squeeze Modes and Applications vol.21, pp.15, 2010, https://doi.org/10.1177/1045389X09355666
  16. A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers vol.19, pp.3, 2010, https://doi.org/10.1088/0964-1726/19/3/035002
  17. Influence of magnetic field on dispersion and dissipation of electric field of low and medium frequencies in hybrid magnetorheological suspensions vol.27, 2015, https://doi.org/10.1016/j.jiec.2014.09.047
  18. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator vol.20, pp.10, 2011, https://doi.org/10.1088/0964-1726/20/10/105003
  19. Improving the critical speeds of high-speed trains using magnetorheological technology vol.22, pp.11, 2013, https://doi.org/10.1088/0964-1726/22/11/115012
  20. Phase based stiffness tuning algorithm for a magnetorheological elastomer dynamic vibration absorber vol.23, pp.1, 2014, https://doi.org/10.1088/0964-1726/23/1/015016
  21. Creep and recovery behaviors of magnetorheological elastomers vol.5, pp.3, 2010, https://doi.org/10.1007/s11465-010-0096-8
  22. Soft magnetorheological polymer gels with controllable rheological properties vol.22, pp.7, 2013, https://doi.org/10.1088/0964-1726/22/7/075029
  23. Damping Properties of Magnetorheological Elastomers vol.1143, 2017, https://doi.org/10.4028/www.scientific.net/AMR.1143.247
  24. Sensing capabilities of graphite based MR elastomers vol.20, pp.2, 2011, https://doi.org/10.1088/0964-1726/20/2/025022
  25. The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode vol.23, pp.7, 2014, https://doi.org/10.1088/0964-1726/23/7/075009
  26. Dynamic Characterization and Modeling of Isotropic Magnetorheological Elastomers Under Tensile-Compressive Loadings vol.53, pp.9, 2017, https://doi.org/10.1109/TMAG.2017.2698403
  27. Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber vol.19, pp.8, 2010, https://doi.org/10.1088/0964-1726/19/8/085008
  28. Recent progress on the magnetorheological plastomers vol.6, pp.2, 2015, https://doi.org/10.1080/19475411.2015.1062437
  29. Dynamic characteristics and control of magnetorheological/electrorheological sandwich structures: A state-of-the-art review vol.27, pp.15, 2016, https://doi.org/10.1177/1045389X15620041
  30. Performance evaluation and comparison of magnetorheological elastomer absorbers working in shear and squeeze modes vol.26, pp.14, 2015, https://doi.org/10.1177/1045389X14568819
  31. Microstructure and magnetorheology of graphite-based MR elastomers vol.50, pp.9-10, 2011, https://doi.org/10.1007/s00397-011-0567-9
  32. A pendulum-like tuned vibration absorber and its application to a multi-mode system vol.26, pp.11, 2012, https://doi.org/10.1007/s12206-012-0857-x
  33. Experimental study and modeling of a novel magnetorheological elastomer isolator vol.22, pp.11, 2013, https://doi.org/10.1088/0964-1726/22/11/117001
  34. An Active-damping-compensated Magnetorheological Elastomer Adaptive Tuned Vibration Absorber vol.21, pp.10, 2010, https://doi.org/10.1177/1045389X10375485
  35. Suppressing harmonic vibrations of a miniature cryogenic cooler using an adaptive tunable vibration absorber based on magneto-rheological elastomers vol.82, pp.3, 2011, https://doi.org/10.1063/1.3553198
  36. Development and simulation evaluation of a magnetorheological elastomer isolator for seat vibration control vol.23, pp.9, 2012, https://doi.org/10.1177/1045389X11435431
  37. Note: Real time control of a tunable vibration absorber based on magnetorheological elastomer for suppressing tonal vibrations vol.83, pp.4, 2012, https://doi.org/10.1063/1.4704455
  38. Analysis of Vibration Characteristics of Magnetorheological Elastomer Sandwich Beam under Non-Homogeneous Magnetic Field vol.101, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amm.101-102.202
  39. Fabrication and dynamic viscoelastic properties of MR elastomers with silicone oil vol.59, pp.1, 2019, https://doi.org/10.3233/jae-171162
  40. Review on Seat Suspension System Technology Development vol.9, pp.14, 2009, https://doi.org/10.3390/app9142834
  41. Magnetic stimuli-response properties of polyurethane-based magnetorheological soluble gel vol.6, pp.9, 2009, https://doi.org/10.1088/2053-1591/ab2dc3
  42. Magneto-Rheological Variable Stiffness and Damping Torsional Vibration Control of Powertrain System vol.7, pp.None, 2009, https://doi.org/10.3389/fmats.2020.00121
  43. High performance magnetorheological elastomers strengthened by perpendicularly interacted flax fiber and carbonyl iron chains vol.29, pp.2, 2009, https://doi.org/10.1088/1361-665x/ab5e49
  44. Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing vol.25, pp.3, 2009, https://doi.org/10.12989/sss.2020.25.3.323
  45. Recent progress of magnetorheological elastomers: a review vol.29, pp.12, 2009, https://doi.org/10.1088/1361-665x/abbc77
  46. Magnetorheological elastomers - An underestimated class of soft actuator materials vol.32, pp.14, 2021, https://doi.org/10.1177/1045389x21990888
  47. Dynamic Behavior of Sandwich Structures with Magnetorheological Elastomer: A Review vol.14, pp.22, 2021, https://doi.org/10.3390/ma14227025