Evaluation of Extractants for Bio-butanol Extraction Fermentation Using Organic Solvents and Ionic Liquids

유기용매와 이온성액체를 이용한 바이오 부탄올 추출발효 용매 선정 평가

  • Cho, Min-Ok (Korea Institute of Science and Technology, Center for Environmental Technology Research) ;
  • Lee, Sun-Mi (Korea Institute of Science and Technology, Center for Environmental Technology Research) ;
  • Sang, Byoung-In (Korea Institute of Science and Technology, Center for Environmental Technology Research) ;
  • Um, Young-Soon (Korea Institute of Science and Technology, Center for Environmental Technology Research)
  • 조민옥 (한국과학기술연구원 환경기술연구단) ;
  • 이선미 (한국과학기술연구원 환경기술연구단) ;
  • 상병인 (한국과학기술연구원 환경기술연구단) ;
  • 엄영순 (한국과학기술연구원 환경기술연구단)
  • Published : 2009.10.29

Abstract

Oleyl alcohol, butyl butyrate, and two different ionic liquids were evaluated for the extraction of butanol from culture broth without toxic effect to cells. The tested solvents showed more than 50% extraction efficiency, and oleyl alcohol was chosen as the best extractant for butanol among the used extractants with a partition coefficient of 2.89. When oleyl alcohol was used as an extractant, more than 80% of butanol was extracted in the wide range of butanol concentrations (1-20 g/L) and pH values (pH 4-5.5). In extractive fermentation using oleyl alcohol only, there was 11% more butanol production and glucose consumption when compared to that without extractive fermentation, implicating a reduced inhibitory effect of butanol due to butanol removal to the oleyl alcohol phase. In addition, oleyl alcohol did not inhibit cell growth, while a mixture of oleyl alcohol and butyl butyrate with the volume ratio of 9:1~7:3 inhibited either butanol production or cell growth significantly due to the toxicity of butyl butyrate to cells. In conclusion, oleyl alcohol can be used as an efficient and non-toxic solvent for extractive fermentation for butanol production.

본 연구에선 바이오부탄올 생산을 위한 추출발효에 적용하고자 부탄올 추출에 효율적이고 미생물에 독성을 주지 않는 적합한 추출용매를 선정하고자 하였다. 추출 용매를 선정하기 위하여 부틸 부틸레이트, oleyl alcohol, 친환경 용매인 소수성 이온성 액체 2 종류를 이용하여 분배계수를 구한 결과, 부틸 부틸레이트와 oleyl alcohol이 높은 부탄올 분배계수를 나타내었고 부탄올 농도 1-20 g/L와 pH 4-5.5 범위에서 80% 이상의 우수하고 안정적인 추출효율을 나타내었다. 미생물에 독성이 없는 oleyl alcohol를 사용한 회분식 추출발효에서는 추출을 하지 않은 회분식 배양보다 11% 향상된 부탄올 생산을 보였다 (11.2 g/L vs. 12.4 g/L). 이는 배양액 내의 부탄올이 추출되어 배양액내의 부탄올 농도가 낮게 유지됨으로써 부탄올 독성 영향이 감소되었고, 이로 인해 향상된 부탄올 생산이 이루어진 것으로 판단된다. Oleyl alcohol:부틸부티레이트 부피비를 9:1로 혼합한 용매를 사용했을 경우는 미생물 생장에는 저해 영향이 미미했으나 부탄올 생산은 추출발효를 하지 않은 회분식 배양에 비해 60%에 그쳤다. 부틸부티레이트를 20% 이상 미생물 생장에 심각한 저해를 주는 것으로 관찰되어졌다. 본 연구를 통해, 실험에 사용된 4가지 추출 용매 중에서 oleyl alcohol이 미생물에게 독성영향을 끼치지 않으면서 부탄올 추출을 효율적으로 할 수 있음을 알 수 있었고, oleyl alcohol을 바이오 부탄올 연속 추출발효에 적용한다면 향상된 부탄올 생산성을 얻을 수 있을 것으로 기대된다.

Keywords

References

  1. Kim, B.-C., J.-Y. Park, Y.-S. Um, B.-I. Sang, and Y.-C. Chung (2008) Bio-alcohol production from organic waste. Daehan Hwangyeong Gonghag Hoeji 30: 878-890
  2. Ragauskas, A. J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, and T. Tschaplinski (2006) The path forward for biofuels and biomaterials. Science 311: 484-489 https://doi.org/10.1126/science.1114736
  3. Schubert, C. (2006) Can biofuels finally take center stage?. Nat. Biotechnol. 24: 777-784 https://doi.org/10.1038/nbt0706-777
  4. D$\H{\"{u}}$rre, P. (2007) Biobutanol: an attractive biofuel. Biotechnol. J. 2: 1525-1534 https://doi.org/10.1002/biot.200700168
  5. Schwarz, W. H. and J. R. Gapes (2006) Butanolrediscovering a renewable fuel. BioWorld Europe 01-2006: 16-19
  6. Ounine, K., H. Petitdemange, G. Raval, and R. Gay (1985) Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum. Appl. Environ. Microbiol. 49: 874-878
  7. Ezeji, T. C., N. Qureshi, and H. P. Blaschek (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in-situ recovery by gas stripping. World J. Microbiol. Biotechnol. 19: 595-603 https://doi.org/10.1023/A:1025103011923
  8. Qureshi, N. and I. S. Maddox (1995) Continuous production of acetone-butanol-ethanol using immobilized cells of Clostridium acetobutylicum and integration with product removal by liquid-liquid extraction. J. Ferment. Bioeng. 80: 185-189 https://doi.org/10.1016/0922-338X(95)93217-8
  9. Qureshi, N., I. S. Maddox, and A. Friedl (1992) Application of continuous substrate feeding to the ABE fermentation: relief of production inhibition using extraction, perstraction, stripping, and pervaporation. Biotechnol. Progr. 8: 382-390 https://doi.org/10.1021/bp00017a002
  10. Nielsen, D. R. and K. J. Prather (2009) In-situ product recovery of n-butanol using polymeric resins. Biotechnol. Bioeng. 102: 811-821 https://doi.org/10.1002/bit.22109
  11. Sang, B.-I. and Y.-H. Kim (2008) Next generation biofuel. News & Information for Chemical Engineers 26: 704-709
  12. Ezeji, T. C., N. Qureshi, and H. P. Blaschek (2004) Butanol fermentation research: upstream and downstream manipulations. The Chemical Record 4: 305-314 https://doi.org/10.1002/tcr.20023
  13. Lee, S.-M., W.-J. Chang, and Y.-M. Koo (2005) Application of ionic liquids in biotechnology. Korean J. Biotechnol. Bioeng. 20: 183-191
  14. Roffler, S. R., H. W. Blanch, and C. R. Wilke (1987) In-situ recovery of butanol during fermentation Part 1: Batch extactive fermentation. Bioprocess. Eng. 2: 1-12 https://doi.org/10.1007/BF00369221
  15. Lee, S.-Mi., M. O. Cho, C. H. Park, Y.-C. Chung, J. H. Kim, B.-I. Sang, and Y. Um (2008) Continuous butanol production using suspended and immobilized clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy Fuels 22: 3459-3464 https://doi.org/10.1021/ef800076j
  16. Dűrre, P. (2008) Fermentative butanol production. Ann. N.Y. Acad. Sci. 1125: 353-362 https://doi.org/10.1196/annals.1419.009
  17. Bocquet, S., V. F. Gascons, N. C. Muvdi, J. Sanchez, V. Athes, and I. Souchon (2006) Membrane-based solvent extraction of aroma compounds: Choice of configurations of hollow fiber modules based on experiments and simulation. J. Membr. Sci. 281: 358-368 https://doi.org/10.1016/j.memsci.2006.04.005