DOI QR코드

DOI QR Code

Synthesis of Carbon Nanotubes Supported PtCo Electrocatalysts and Its Characterization for the Cathode Electrode of PEMFC

탄소나노튜브에 담지된 PtCo 촉매 제조 및 PEMFC Cathode 전극 특성

  • Jung, Dong-Won (School of Materials Science and Engineering, University of Ulsan) ;
  • Park, Soon (School of Materials Science and Engineering, University of Ulsan) ;
  • Kang, Jung-Tak (School of Chemical Engineering&Bioengineering, University of Ulsan) ;
  • Kim, Jun-Bom (School of Chemical Engineering&Bioengineering, University of Ulsan)
  • 정동원 (울산대학교 첨단소재공학부) ;
  • 박순 (울산대학교 첨단소재공학부) ;
  • 강정탁 (울산대학교 생명화학공학부) ;
  • 김준범 (울산대학교 생명화학공학부)
  • Published : 2009.05.27

Abstract

The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.

Keywords

References

  1. F. Barbir and T. Gomez, Int. J. Hydrogen Energy, 21, 891 (1996) https://doi.org/10.1016/0360-3199(96)00030-4
  2. D. Knights, K. M. Colbow, J. St-Pierre and D. P. Wilkinson, J. Power Sources, 127, 127 (2004) https://doi.org/10.1016/j.jpowsour.2003.09.033
  3. V. Mehta and J. S. Cooper, J. Power Sources, 114, 32 (2003) https://doi.org/10.1016/S0378-7753(02)00542-6
  4. H. Tang, Z. G. Qi, M. Ramani and J. F. Elter, J. Power Sources, 158, 1306 (2006) https://doi.org/10.1016/j.jpowsour.2005.10.059
  5. S. A. Grigoriev, E. K. Lyutikova, S. Martemianov, V. N. Fateev, Int. J. Hydrogen Energy, 32, 4438 (2007) https://doi.org/10.1016/j.ijhydene.2007.02.005
  6. Y. Shao, G. P. Yin, Y. Z Gao and P. F. Shi, J. Electrochem. Soc. 153, A1093 (2006) https://doi.org/10.1149/1.2191147
  7. K. C. Lee, J. J. Zhang, H. J. Wang and D. P. Wilkinson, J. Appl. Electrochem., 36, 507 (2006) https://doi.org/10.1007/s10800-006-9120-4
  8. M. M. Shaijumon, Ramaprabhu and N. Rajalakshmi, Appl. Phys. Lett., 88, 253105 (2006) https://doi.org/10.1063/1.2214139
  9. J. M. Tang, K. Jensen, M. Waje, W. Z. Li, P. Larsen, K. Pauley, Z. W. Chen, P. Ramesh, M. E. Itkis, Y. S. Yan and R. C. Haddon, J. Phys. Chem. C, 111, 17901 (2007) https://doi.org/10.1021/jp071469k
  10. G. W. Yang, G. Y. Gao, G. Y. Zhao and H. L. Li, Carbon, 45, 3036 (2007) https://doi.org/10.1016/j.carbon.2007.06.021
  11. J. J. Niu and J. N. Wang, Electrochim. Acta, 53, 8058 (2008) https://doi.org/10.1016/j.electacta.2008.06.026
  12. S. Iijima, Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  13. L. Li and Y. C. Xing, J. Power Sources, 178, 75 (2008) https://doi.org/10.1016/j.jpowsour.2007.12.002
  14. F. A. de Bruijin, V. A. T. Dam and G. I. M. Janssen, Fuel Cells, 8, 3 (2008) https://doi.org/10.1002/fuce.200700053
  15. Y. S.-Horn, W. C. Sheng, S. Chen, P. J. Ferreira, E. F. Holby and D. Morgan, Top Catal., 46, 285 (2007) https://doi.org/10.1007/s11244-007-9000-0
  16. L. Li and Y. C. Xing, J. Electrochem. Soc., 153, A1823 (2006) https://doi.org/10.1149/1.2234659
  17. X. Li, Principles of Fuel Cells, p.13-14, 149, Taylor & Francis, New York (2006)
  18. Y. Wang, J. Ren, K. Deng, L. Gui and Y. Tang, Chem. Mater., 12, 1622 (2000) https://doi.org/10.1021/cm0000853
  19. Y. Mu, H. Liang, J. Hu, L. Jiang and L. Wan, J. Phys. Chem. B, 109, 22212 (2005) https://doi.org/10.1021/jp0555448
  20. Z. Liu, L. M. Gan, L. Hong, W. X. Chen and J. Y. Lee, J. Power Sources, 139, 73 (2005) https://doi.org/10.1016/j.jpowsour.2004.07.012
  21. T. B. Massalski, Binary Alloy Phase Diagram, vol.1, p.791, Co-Pt Phase Diagram, American Society for Metals (1986)
  22. E. Antolini, J. R. C. Salgado, M. J. Giz and E. R. Gonzalez, Int. J. Hydrogen Energy, 30, 1213 (2005) https://doi.org/10.1016/j.ijhydene.2005.05.001
  23. R. O'Hayre, S. W. Cha, W. Colella and F. B. Prinz, Fuel Cell Fundamentals, p.212-223, John Wiley & Sons, New York (2006)
  24. A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini and L. Giorgi, J. Power Sources, 105, 13 (2002) https://doi.org/10.1016/S0378-7753(01)00921-1

Cited by

  1. Durability of Polymer Electrolyte Membrane Fuel Cell with Pt/CNTs Catalysts in Cell Reversal Conditions by Hydrogen Starvation vol.11, pp.6, 2011, https://doi.org/10.1002/fuce.201100034
  2. Effects of PtMn composition on carbon supported PtMn catalysts for PEMFC vol.21, pp.2, 2012, https://doi.org/10.7844/kirr.2012.21.2.034
  3. Preparation and Characteristics of Pt/GDE Loaded with Pd Promoter for PEMFC vol.27, pp.3, 2016, https://doi.org/10.7316/KHNES.2016.27.3.264