DOI QR코드

DOI QR Code

Influence of Gypsum, Popped Rice Hulls and Zeolite on Contents of Ca2+, Mg2+, Na+, K+ in Reclaimed Tideland Soils in Kyehwado

계화도 간척지에서 석고, 팽화왕겨 및 제올라이트 처리가 토양 중 양이온 함량에 미치는 영향

  • Baek, Seung-Hwa (Dept. of Biofood Science and Biotechnology, Chungbuk Provincial University of Science & Technology) ;
  • Lee, Sang-Uk (Div. of Life-Environment, College of Life Science and Natural Resources, Wonkwang University) ;
  • Lim, Hyo-Bin (Div. of Life-Environment, College of Life Science and Natural Resources, Wonkwang University) ;
  • Kim, Dae-Geun (Div. of Life-Environment, College of Life Science and Natural Resources, Wonkwang University) ;
  • Kim, Seong-Jo (Div. of Life-Environment, College of Life Science and Natural Resources, Wonkwang University)
  • 백승화 (충북도립대학 바이오식품생명과학과) ;
  • 이상욱 (원광대학교 생명환경학부) ;
  • 임효빈 (원광대학교 생명환경학부) ;
  • 김대근 (원광대학교 생명환경학부) ;
  • 김성조 (원광대학교 생명환경학부)
  • Published : 2009.03.31

Abstract

The effect of application of gypsum (G), popped rice hulls (PRH), and zeolite (Z) in exchangeable cations concentrations of reclaimed tideland soil in Kyehwado was investigated for 3 years from 2004 to 2006 in a pot experiment with bermuda grass (Cynodon dactylon). Treatments with three soil conditioner and with three applications were established with three replications; G1 (1,550 kg $10a^{-1}$), G2 (3,100), and G3 (6,200) for gypsum, H1 (1,000), H2 (2,000), and H3 (3,000) for PRH, and HZ1 (200), HZ2 (400), and HZ3 (800) for co-application of zeolite with PRH at the 1,500 kg $10a^{-1}$. At 60, 90, 120 days after treatment (DAT), exchangeable cations ($K^+$, $Na^+$, $Mg^{2+}$, and $Ca^{2+}$) were analyzed Gypsum application significantly decreased $k^+$, $Na^+$, $Mg^{2+}$ in the soil probably due to exchange and subsequent leaching of these cations by $Ca^{2+}$ from the gypsum applied. Overall, $K^+$ concentration was gradually decreased by continuous application of soil conditioners and was in the order of 2004>2005>2006 regardless of the kinds and application rate of soil conditioners. Comparing $K^+$ concentrations among the soil conditioners in the same year, its concentration was in the order of gypsum$Na^+$ concentration; i.e. $Na^+$ concentration was in the order of gypsum$\ll$PRH$Mg^{2+}$ also showed a similar pattern to $Na^+$. Gypsum application significantly increased $Ca^{2+}$ concentration and in the gypsum treated soil $Ca^{2+}$ concentration increased with years.

본 연구는 간척지 토양 중 세사양토에 대하여 입단형성을 위해 가해진 토양개량제가 토양 중 양이온 함량변화에 미치는 영향을 분석하기 위하여 토양개량제로 이수석고 1550 (G1), 3100 (G2), 6200 (G3) kg/10 a, 팽화왕겨 1000 (H1), 2000 (H2), 3000 (H3) kg/10 a, 팽화왕겨 1500 kg/10 a에 zeolite 200 (HZ1), 400 (HZ2), 800 (HZ3) kg/10 a가 되도록 처리량을 달리하여 3년간 연용하고, 버뮤다그래스를 재배한 토양을 60, 90, 120일 경과 후 채취하여 토양개량제 연용이 토양 중 양이온 함량변화에 미치는 결과를 보고한다. 이수석고의 처리는 토양 중 $K^+$, $Na^+$, $Mg^{++}$의 함량을 현저히 감소시키는 것으로 나타났다. $K^+$ 함량은 토양개량제의 종류 및 처리수준과 관계없이 연용기간이 길어질수록 낮아지는 경향이었다. $K^+$ 함량은 연도별의 경우 2004 > 2005 > 2006 순으로 낮았으나 동일연도에서는 이수석고 < 팽화왕겨 < 팽화왕겨+zeolite 순이었으며, 90 DAT에서 잘 나타나고 있었다. $Na^+$ 함량은 토양개량제 연용에 따른 변화는 없었으나 토양개량제의 종류에 의한 함량에서 차이를 보였다. 2006년 120 DAT 처리구에서 이수석고 및 그 처리량에 따라 $Na^+$ 함량이 현저히 감소하는 현상을 볼 수 있었고, 2006년도 토양 중 $Na^+$ 함량은 이수석고 $\ll$ 팽화왕겨 < 팽화왕겨 +zeolite 순이었다. $Mg^{++}$ 함량은 팽화왕겨+zeolite의 경우 년도별 증가형태가 안정적이었고, 시간이 경과할수록 이수석고 < 팽화왕겨 < 정화왕겨+zeolite 순으로 높아지고 있었다. 이수석고 및 그 처리량에 따라 $Mg^{++}$ 함량은 현저히 감소하는 현상을 볼 수 있었고, 팽화왕겨, 팽화왕겨+zeolite 처리구에서는 대조구에 비해 그리고 연용에 따라 감소되는 정도가 적었다. 동일 조건에서의 토양개량제 처리는 이수석고 < 팽화왕겨 < 팽화왕겨+zeolite 순으로 높아지고 있었다 $Ca^{++}$의 경우 이수석고 연용처리는 처리수준이 높을수록 토양 중 $Ca^{++}$이 높아지는 결과가 되었으며, 년도별 변화도 2004 < 2005 < 2006년의 순으로 연용기간이 늘어남에 따라 높아지는 경향이었다. 팽화왕겨, 팽화왕겨+zeolite 연용처리는 대조구에 비해 함량변화가 적었다. 토성이 세 사양토인 간척지의 양이온 중 $K^+$, $Na^+$, $Mg^{++}$ 함량 감소에 효과적인 토양개량제는 이수석고 이었다.

Keywords

References

  1. Koo, J. W., Choi, J. K. and Son, J. G. (1998) Soil Properties of Reclaimed Tidel Lands and Tidelands of Western Sea Coast in Korea. J. Korean Soc. Soil Sci. FERT. 31(2), 120-127
  2. Ahn, Y., Lee, S. H., Ji, K. J., Hong, B. D., Rho, H. M., Ryu, S. H., Lee, S. M., Han, K. H., Choi, W. J., Yun, S. I. and Choi, Y. D. (2002) Studies on changes of soil characteristics and utilization after tidal land reclamation. KARICO Project No. 2002-05-09, 31-41
  3. Dontsova, K. M. and Norton, L. D. (2002) Clay dispersion, infiltration, and erosion as influenced by exchangeable Ca, and Mg. Soil Sci. 163, 184-193
  4. Sparks, D. L. (1995) Environmental soil chemistry. Academic Press, San Diego
  5. Lebron, I., Suarez, D. L. and Yoshida, T. (2002) Gypsum effect on the aggregate size and geometry of three sodic soils under reclamation. Soil Sci. Soc. Am. J. 66, 92-98 https://doi.org/10.2136/sssaj2002.0092
  6. Shainberg, I., Sumnur, M. E., Miller, W. P., Farina, M. P. W., Pavon, M. A. and Fey, M. V. (1989) Use of gypsum on soils: A review p.2-111. In Stewart, B. A.(ed.) Advances in soil science. Springer-Verlag, New York
  7. Carter, M. R. (2002) Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions. Agron. J. 94, 38-47 https://doi.org/10.2134/agronj2002.0038
  8. Mathur, S. P. (1991) Some comments on loss or accumulation of soil organic matter and their effects on soil quality. p. 50-53. In Mathur, S. P., and Wang, C. (ed.) Soil quality in the Canadian context-- 1988 discussion papers. Tech. Bull. 1991-1E. Res. Branch, Agric. Canada, Ottawa, ON
  9. Tavant, Y., Tavant, H. and Bruckert, S. (1994) Variation du carbone orgarnicque en fontion des proprieties des sols et de l'altitude dans Ie Jura(France). Geoderma 61, 133-141 https://doi.org/10.1016/0016-7061(94)90015-9
  10. Baldock, J. A. and Skjemstad, J. O. (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31, 697-710 https://doi.org/10.1016/S0146-6380(00)00049-8
  11. Muneer, M. and Oades, J. M. (1989 a) The role of Ca-organic interactions in soil aggregate stability. I. Laboratory studies with $^{14}C$- glucose, $CaCO_3$, and $CaSO_4$ . $2H_2O$. Aust. J. Soil Res. 27, 389-399 https://doi.org/10.1071/SR9890389
  12. Muneer, M. and Oades, J. M. (1989 b) The role of Ca-organic interactions in soil aggregate stability. II. Field studies with $^{14}C$-labelled straw, $CaCO_3$, and $CaSO_4$ . $2H_2O$ Aust. J. Soil Res. 27, 401-409 https://doi.org/10.1071/SR9890401
  13. Park, M. U., Cho, I. S.,, Yoon, J. H., Kim, E. Y., Gwak, H. G., Oh, D. S., Song, K. C., Jeong, B. G., Yeon, B. Y., Lee, C S., Somg, Y. S., Cho, H. J., Kim, Y. H., Eom, G. C., Heon, B. G., Jang, Y. S., Eom, M. H., Kim, S. H., Seo, J. S., Kueon, J. S., Ham, S. S., Ryu, C. H., Cho, K, H., Lee, D. C., Yoon, E. S. and Lee, J. S. (2000) Analysis methods of soil and plant. National Institute of Agricultural Science and Technology, RDA, 89-93, 103-131
  14. Oh, W. K. (1990) Liming materials and desalinization of marine originated tidal soil. Korean J. Soil Sci. Fert. 23, 107-113

Cited by

  1. Effects of Soil Amendment Application on Soil Physico-chemical Properties and Yields of Summer Forage Crops in the Sukmoon Reclaimed Tidal Land in Korea vol.29, pp.4, 2010, https://doi.org/10.5338/KJEA.2010.29.4.354
  2. The Effects of Solidified Sewage Sludge as a Soil Cover Material for Cultivation of Bioenergy Crops in Reclaimed Land vol.57, pp.3, 2012, https://doi.org/10.7740/kjcs.2012.57.3.238
  3. Temporal Variations on Soil Salinity and Cation Displacement at Saemangeum and Yeongsangang Reclaimed Tidal Lands vol.03, pp.04, 2014, https://doi.org/10.4236/jacen.2014.34014