Evaluation of the Genotoxicity of Decursin and Decursinol Angelate Produced by Angelica gigas Nakai

  • Kim, Kang-Min (Department of Smart Foods and Drugs, Inje University) ;
  • Kim, Tae-Ho (Department of Smart Foods and Drugs, Inje University) ;
  • Park, Yun-Jung (Department of Smart Foods and Drugs, Inje University) ;
  • Kim, Ik-Hwan (College of Life Sciences and Biotechnology, Korea University) ;
  • Kang, Jae-Seon (Department of Pharmacy, Kyungsung University)
  • Published : 2009.03.31

Abstract

In this study, we assessed the stability and toxicological safety of Angelica gigas Nakai (A. gigas Nakai) extract, which is comprised of decursin and decursinol angelate (D/DA). D/DA was tested for mutagenicity using Ames Salmonella tester strains (TA102, TA1535, and TA1537) with or without metabolic activation (S9 mix). No increase in the number of revertants was observed in response to any of the doses tested (1.25, 12.5, 125, and $1,250{\mu}/mLg$). In addition, a chromosome aberration test was conducted in the Chinese hamster lung (CHL) cell line. To accomplish this, cells were treated with D/DA (3.28, 13.12, 52.46, and $209.84{\mu}g/mL$) or with Mitomycin C ($0.1{\mu}/mLg$) as a positive control in the case of no metabolic activation or benzo(a)pyrene ($20{\mu}g/mL$) in the case of metabolic activation. No significant increase in chromosome aberrations was observed in response to treatment with any of these concentrations, regardless of activation of the metabolic system. According to these results, we concluded that D/DA did not induce bacterial reverse mutation or clastogenicity in vitro in the range of concentrations evaluated in these experiments.

Keywords

References

  1. Ahn, M. J., Lee, M. K., Kim, Y. C. & Sung, S. H. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography-diode array detector coupled with electrospray ionization/mass spectrometry. J Pharmaceut Biomed 46:258-266 (2008) https://doi.org/10.1016/j.jpba.2007.09.020
  2. Konoshima, M., Chi, H. J. & Hata, K. Coumarins from The root of Angelica gigas Nakai. Chem Pharm Bull 16:1139-1140 (1968) https://doi.org/10.1248/cpb.16.1139
  3. Ryu, K. S., Hong, N. D. Kim, N. J. & Kong, Y. Y. Studies on the coumarin constituents of the root of Angelica gigas Nakai. Isolation of decursinol angelate and assay of decursinol angelate and decursin. Kor J Pharmacogn 21:64-68 (1990)
  4. Yook, C. S. Coloured medicinal plants of Korea, Academy Book Co., Seoul (1990)
  5. Lee, S. H. et al. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch Pharm Res 26:727-730 (2003) https://doi.org/10.1007/BF02976682
  6. Lee, S. H. et al. Antibacterial courmins from Angelica gigas roots. Arch Pharm Res 26:449-452 (2003) https://doi.org/10.1007/BF02976860
  7. Yim, D. S. et al. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res 65:1035-1044 (2005)
  8. Kang, S. Y. et al. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase structure-activity relationships. J Nat Prod 64:683-685 (2001) https://doi.org/10.1021/np000441w
  9. Ahn, K. S., Sim, W. S. & Kim, I. H. Decursin: a cytotoxic agent and protein kinase C activator from the root of Angelica gigas. Planta Med 62:7-9 (1996) https://doi.org/10.1055/s-2006-957785
  10. Ames, B. N., Durston, W. E., Yamasaki, E. & Lee, F. D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci 70:2281-2285 (1973) https://doi.org/10.1073/pnas.70.8.2281
  11. Maron, D. M. & Ames, B. N. Revised methods for the salmonella mutagenicity test. Mutat Res 113:173-215 (1983) https://doi.org/10.1016/0165-1161(83)90010-9
  12. Ishidate, M. Jr. & Odashima, S. Chromosome tests with 134 compounds on Chinese hamster cells in vitro. Mutat Res 48:337-354 (1977) https://doi.org/10.1016/0027-5107(77)90177-4
  13. Jenderny, J., Walk, R. A., Hackenberg, U. & Rohrborn, G. Chromosomal abnormalities and sister-chromatid exchange in bone marrow cells of mice and Chinese hamster after inhalation and intraperitoneal administration. Mutat Res 203:1-10 (1988) https://doi.org/10.1016/0165-1161(88)90002-7
  14. Matsuoka, A., Hayashi, M. & Ishidate, M. Chromosomal aberration test on 29 chemicals combined with S-9 mix in vitro. Mutat Res 66:277-290 (1979) https://doi.org/10.1016/0165-1218(79)90089-2
  15. Radman, M., Jeggo, P. & Wagner, R. Chromosomal rearrangement and carcinogenesis. Mutat Res 98:249-264 (1982) https://doi.org/10.1016/0165-1110(82)90035-5
  16. Hayashi, M., Sofuni, T. & Ishidate, M. Jr. High-sensitivity in micronucleus induction of mouse strain. Mutat Res 105:253-256 (1982) https://doi.org/10.1016/0165-7992(82)90038-0
  17. Lee, W. S. et al. Genetic toxicity test of 8-hydroxyquinoline by Ames Micronucleus comet assays and microarray analysis. Mol Cell Toxicol 3:90-97 (2007)
  18. Dunnett, C. W. A multiple comparison procedure for comparing several treatments with the control. J Am Stat Assoc 50:1096-1121 (1955) https://doi.org/10.2307/2281208
  19. McCann, J. & Ames, B. N. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals: $Discussion^\ast$. Proc Nat Acad Sci 73:950-954 (1976) https://doi.org/10.1073/pnas.73.3.950
  20. Zimmermann, F. K. Induction of mitotic gene conversion by mutagens. Mutat Res 11:327-337 (1971)
  21. Mersch-Sundermann, V. S., Kerekordes, S. & Mochayedi, S. Sources of variability of the Escherichia coli PQ 37 genotoxicity assay (SOS chromotest). Mutation Res 252:51-60 (1991) https://doi.org/10.1016/0165-1161(91)90251-3
  22. Hayashi, M. et al. The micronucleus assay with mouse peripheral blood reticulocytes using acridine orangecoated slides. Mutat Res 245:245-249 (1990) https://doi.org/10.1016/0165-7992(90)90153-B
  23. Ryu, J. C., Kim, H. J., Seo, Y. R. & Kim, K. R. Single cell gel electrophoresis (comet assay) to detect DNA damage and apoptosis in cell level. Environ Mut Carcinogens 17:71-77 (1997)
  24. Ryu, J. C. & Kim, Y. J. Evaluation of the genetic toxicity of synthetic chemicals (IX)- a synthetic selective herbicide, pretilachor-. J Environ Toxicol 19:93-100 (2004)
  25. Sato, T. et al. Evaluation of the SOS chromotest for the detection of antimutagens. Environ Mol Mutagenesis 17:258-263 (1991) https://doi.org/10.1002/em.2850170407
  26. Ryu, J. C. et al. A study on the antimutagenic effect f cinnamic acid derivatives in Escherichia coli PQ 37 (SOS Chromotest) (I). Environ Mut Carcinogens 13:8-17 (1993b)
  27. Galloway, S. M. et al. Multilaboratory comparison of in vitro tests for chromosome aberrations in CHO and CHL cells tested under the same protocols. Environ Mol Mutangenesis 29:189-207 (1997) https://doi.org/10.1002/(SICI)1098-2280(1997)29:2<189::AID-EM10>3.0.CO;2-A
  28. Yu, Y. B. & Jo, S. K. Evaluation on the safety of $\gamma$-irradiated Angelica gigas Nakai: Stability of acitve components and safety in genotoxicity test. J Korean Soc Food Sci Nutr 29:300-306 (2000)