Genetic variations and relationships of Phragmites japonica and P. communis according to water environment change

수환경변화에 따른 갈대와 달뿌리풀의 유전적 변이 및 유연관계

  • Published : 2009.04.30

Abstract

We performed RAPD analysis to investigate the inter-/intraspecific relationships and regional variations of Phragmites japonica and P. communis according to the environmental change. One hundred and fourty nine genetic effective polymorphic bands between 300 bp and 1,900 bp were marked from RAPD PCR with nine oligoprimers. From the RAPD analysis by Nei-Li's genetic distance, the dissimilarity indices among the populations of Phragmites japonica were relatively low from 0.012 to 0.061, and Phragmites communis were also low from 0.033 to 0.095. It showed the close genetic relationships among the same species populations, and both species were distinctly independent with relatively high level of dissimilarity indices (0.043 - 0.132). The obvious genetic markers to distinguish two species were confirmed and those profiles were suggested. From the UPGMA phenogram by RAPD analysis, both species showed the water environment related cluster patterns by distributional regions. RAPD analysis was useful to delimit two species taxonomically and to investigate the genetic relationships among inter-/intraspecific populations.

갈대속 식물 두 종 달뿌리풀과 갈대의 종간 유연관계분석 및 수환경변화에 따른 종내 지역별 유연관계를 조사하기위해 RAPD 분석을 수행하였다. 총 9개의 oligoprimer를 이용한 효소중합반응에서 300 bp에서 1,900 bp 사이의 구간에서 142개의 유효한 polymorphic band를 확인하였다. Nei-Li의 genetic distance를 이용한 분석결과에 의하면, 비유사도지수가 달뿌리풀 개체군 종내에서는 0.012에서 0.061, 갈대 개체군 종내에서는 0.033에서 0.095의 낮은 상이성을 나타내어 종내 지역집단간에는 높은 유전적 유연관계를 보였으며, 달뿌리풀 개체군과 갈대 개체군 종간에서는 0.043에서 0.132의 상이성을 나타내어 달뿌리풀과 갈대 사이의 비유사도지수의 큰 차이는 보이지 않았으나 유전적으로 거리가 있는 것으로 나타났다. RAPD 결과 이 두 종 사이에 뚜렷한 차이를 구별할 수 있는 genetic marker를 확인하였고, UPGMA 유집분석에 의하면 두 종은 비슷한 수환경끼리 유연관계가 가까운 것으로 나타났고 다른 수환경끼리는 유연관계가 먼 것으로 나타났다. RAPD 분석법은 갈대속 두 종의 분류학적 혼동 해결과 동시에, 수환경변화에 따른 종내 지역별 유전적 유연관계 확인에 매우 유용한 방법인 것으로 나타났다.

Keywords

References

  1. Keller, B. 2000. Genetic variation among and within populations of Phragmites australis in the Charles River watershed. Aquatic Botany 66: 195-208 https://doi.org/10.1016/S0304-3770(99)00077-7
  2. Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation methods for small quantities of fresh tissues. Phytochemical Bulletin. 17: 144-163
  3. Hardrys, H., M. Balick and B. Schrierwator. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1:55-63 https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
  4. Koppitz, H. 1999. Analysis of genetic diversity among selected populations of Phragmites australis world-wide. Aquatic Botany 64: 209-221 https://doi.org/10.1016/S0304-3770(99)00051-0
  5. Kim, J.H. 2006. Lotic Community Prediction Model responding Environmental Changes. Final Report of Environmental Research, Ministry of Environment. pp. 527. (in Korean)
  6. Lee, T.B. 2003. Coloured Flora of Korea. pp. 525. (in Korean)
  7. Lee, W.C. 1996. LINEAMENTA FLORAE KOREAE. pp.1394-1395. (in Korean)
  8. Nei, M. 1972. Genetic distance between populations. Amer. Natur. 106: 283-292 https://doi.org/10.1086/282771
  9. Ohwi, J. 1984. Flora of Japan. 2nd printing, Smithsonian Inst. Washinton, D.C. pp.169-170
  10. Park, S.H., W.C. Kang, Y.M. Lee, D.K. Kim and S.S. Jeong. 2004. Illustrated Grasses of Korea. Korea National Arboretum. pp. 306-309. (in Korean)
  11. Williams, J., A. Kubelik, J. Rafalski and S. Tingey. 1990. DNA polymorphisms amplified by arbitary primers are useful as genetic markers. Nucleic Acids Research 18: 6231-6239 https://doi.org/10.1093/nar/18.21.6231
  12. Wu, Z., H.R. Potter and D. Hong. 2006. Flora of China. Missouri Bot. Gard. 22: 448-449
  13. Wu, Z. 2007. Flora of China Illustrations. Missouri Bot. Gard. 22:628