DOI QR코드

DOI QR Code

Electrochemical Approaches to Dye-Sensitized Solar Cells

염료감응 태양전지의 전기화학적 접근을 통한 해석

  • 조임현 (울산과학기술대학교 (UNIST) 에너지공학부) ;
  • 임정민 (울산과학기술대학교 (UNIST) 에너지공학부) ;
  • 남희진 (울산과학기술대학교 (UNIST) 에너지공학부) ;
  • 전용석 (울산과학기술대학교 (UNIST) 에너지공학부)
  • Published : 2009.11.30

Abstract

This paper describes one of the hot issues in solar cell studies, dye-sensitized solar cell. DSSC is a kind of photoelectrochemical cells. Therefore, it is quite different from the conventional solar cells which originate from pn semiconductor theory, although its mechanism can be explained with the theory. This paper describes the difference between the conventional semiconductor approaches and a newly adapted one for DSSC. Especially, electrochemical analysis methods such as electrochemical impedance analysis and cyclic voltammogram are briefly introduced, which are commonly used for DSSC analysis.

본 논문에서는 현재 많이 연구되고 있는 염료감응 태양전지에 대해 전기화학적 접근을 통해 설명한다. 특히, 기존 도핑 개념을 적용하는 반도체 태양전지와 다른 점을 비교 설명하고, 이론적으로 어떻게 태양전지가 형성될 수 있는지를 설명한다. 또한 염료감응 태양전지가 탄생되게 된 과정을 고찰해 본다. 이어서, 태양전지에서 많이 사용되는 전기화학적 분석법을 설명하고, 어떻게 적용될 수 있는지 임피던스 분석법을 통해 설명한다. 전기화학에서 많이 사용되는 임피던스와 순환전압전류법을 통해, 염료감응 태양전지를 이루는 주성분인 금속산화물과 염료, 전해질의 에너지준위 분석법에 대해서 간단히 소개한다.

Keywords

References

  1. N. S. Lewis, 'Powering the planet', MRS Bull., 32 808 (2007) https://doi.org/10.1557/mrs2007.168
  2. R. F. Pierret, Semiconductor Fundamentals. (1989)
  3. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weiss$\ddot{o}$rtel, J. Salbeck, H. Spreitzer, and M. Gr$\ddot{a}$tzel, 'Solid-state dyesensitized mesoporous TiO2 solar cells with high photonto-electron conversion efficiencies', Nature, 395, 583 (1998) https://doi.org/10.1038/26936
  4. M. Grt$\ddot{a}$zel, 'Dye-sensitized solar cells', J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003) https://doi.org/10.1016/S1389-5567(03)00026-1
  5. M. Grtzel, 'Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells', J. Photochem. Photobiol. A: Chem., 164, 3 (2004) https://doi.org/10.1016/j.jphotochem.2004.02.023
  6. S. Y. Huang, G. Schlichth$\ddot{o}$rl, A. J. Nozik, M. Grt$\ddot{a}$zel, and A. J. Frank, 'Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells', J. Phys. Chem. B, 101, 2576 (1997) https://doi.org/10.1021/jp962377q
  7. B. O'Regan and M. Grt$\ddot{a}$zel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films', Nature, 353, 737 (1991) https://doi.org/10.1038/353737a0
  8. A. Hagfeldt and M. Grt$\ddot{a}$zel, 'Molecular photovoltaics', Acc. Chem. Res., 33, 269 (2000) https://doi.org/10.1021/ar980112j
  9. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, 'Plastic solar cells', Adv. Funct. Mater., 11, 15 (2001) https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  10. S. G$\ddot{u}$nes, H. Neugebauer, and N. S. Sariciftci, 'Conjugated polymer-based organic solar cells', Chem. Rev., 107, 1324 (2007) https://doi.org/10.1021/cr050149z
  11. H. Hoppe and N. S. Sariciftci, 'Organic solar cells: An overview', J. Mater. Res., 19, 1924 (2004) https://doi.org/10.1557/JMR.2004.0252
  12. E. Becquerel, 'Recherches sur les effets de la radiation chimique de la lumire solaire, au moyen des courants lectriques ', C.R. Acad. Sci., 9, 145 (1839)
  13. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, 'Solar cell efficiency tables (version 34)', Prog. Photovoltaics Res. Appl., 17, 320 (2009) https://doi.org/10.1002/pip.880
  14. G$\acute{a}$bor Benk$\ddot{o}$, J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev, and V. Sundstrom, 'Photoinduced ultrafast dyeto-semiconductor electron injection from nonthermalized and thermalized donor states', J. Am. Chem. Soc., 124, 489 (2002) https://doi.org/10.1021/ja016561n
  15. W. H. Brattain, and C. G. B. Garrett, 'Experiments on the interface between germanium and an electrolyte', Bell Sys. Tech. J., 34, 129 (1955) https://doi.org/10.1002/j.1538-7305.1955.tb03766.x
  16. A. J. Bard and L. R. Faulkner, Electrochemical Methods. (2001)
  17. Gerische.H, 'Electrochemical behavior of semiconductors under illumination', J. Electrochem. Soc., 113, 1174 (1966) https://doi.org/10.1149/1.2423779
  18. J. G. Mavroides, J. A. Kafalas, and D. F. Kolesar, 'Photoelectrolysis of water in cells with SrTiO3 anodes', Appl. Phys. Lett., 28, 241 (1976) https://doi.org/10.1063/1.88723
  19. B. Kraeutler, 'Photoelectrosynthesis of ethane from acetate ion at an n-type TiO2 electrode. The Photo-Kolbe reaction [18]', J. Am. Chem. Soc., 99, 7729 (1977) https://doi.org/10.1021/ja00465a065
  20. J. Moser, 'Notiz uber Verstarkung photoelektrischer Strome durch optische Sensibilisirung', Monatsh. Chem., 8, 373 (1888) https://doi.org/10.1007/BF01510059
  21. M. Spitler and M. Calvin, 'Adsorption and oxidation of rhodamine B at ZnO electrodes', J. Chem. Phys., 67, 5193 (1977) https://doi.org/10.1063/1.434695
  22. M. Spitler and M. Calvin, 'Adsorption and oxidation of rhodamine B at ZnO electrodes', J. Chem. Phys., 67, 5193 (1977) https://doi.org/10.1063/1.434695
  23. M. T. Spitler and M. Calvin, 'Electron transfer at sensitized TiO2 electrodes', J. Chem. Phys., 66, 4294 (1977) https://doi.org/10.1063/1.433739
  24. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, 'Dye sensitised Zinc oxide: Aqueous electrolyte: Platinum photocell', Nature, 261, 402 (1976) https://doi.org/10.1038/261402a0
  25. D. Brkic, P. Forzatti, I. Pasquon, and F. Trifiro, 'Kinetic aspects of dye-sensitized photo-oxygenation', J. Photochem., 5, 23 (1976) https://doi.org/10.1016/0047-2670(76)85003-4
  26. D. A. Lightner, G. S. Bisacchi, and R. D. Norris, 'On the mechanism of the sensitized photooxygenation of pyrroles', J. Am. Chem. Soc., 98, 802 (1976) https://doi.org/10.1021/ja00419a029
  27. J. W. Sargent and R. L. Sanks, 'Dye catalyzed oxidation of industrial wastes', J. Environm. Engng Div. ASCE, 102, 879 (1976)
  28. J. Desilvestro, M. Grtzel, L. Kavan, J. Moser, and J. Augustynski, 'Highly efficient sensitization of titanium dioxide', J. Am. Chem. Soc., 107, 2988 (1985) https://doi.org/10.1021/ja00296a035
  29. N. Vlachopoulos, P. Liska, J. Augustynski, and M. Grtzel, 'Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films', J. Am. Chem. Soc., 110, 1216 (1988) https://doi.org/10.1021/ja00212a033
  30. Y. Tachibana, J. E. Moser, M. Gr$\ddot{a}$tzel, D. R. Klug, and J. R. Durrant, 'Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films', J. Phys. Chem., 100, 20056 (1996) https://doi.org/10.1021/jp962227f
  31. M. S. Wrighton, A. B. Ellis, P. T. Wolczanski, D. L. Morse, H. B. Abrahamson, and D. S. Ginley, 'Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential', J. Am. Chem. Soc., 98, 2774 (1976) https://doi.org/10.1021/ja00426a017
  32. L. Han, N. Koide, Y. Chiba, and T. Mitate, 'Modeling of an equivalent circuit for dye-sensitized solar cells', Appl. Phys. Lett., 84, 2433 (2004) https://doi.org/10.1063/1.1690495
  33. Q. Wang, J. E. Moser, and M. Gr$\ddot{a}$tzel, 'Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells', J. Phys. Chem. B, 109, 14945 (2005) https://doi.org/10.1021/jp052768h
  34. S. M. Park, and J. S. Yoo, 'Electrochemical impedance spectroscopy for better electrochemical measurements', Anal. Chem., 75, 455A (2003)
  35. Y. Jun, and M. G. Kang, 'The characterization of nanocrystalline dye-sensitized solar cells with flexible metal substrates by electrochemical impedance spectroscopy', J. Electrochem. Soc., 154, B68 (2007) https://doi.org/10.1149/1.2374943
  36. K. Hara, H. Sugihara, Y. Tachibana, A. Islam, M. Yanagida, K. Sayama, H. Arakawa, G. Fujihashi, T. Horiguchi, and T. Kinoshita, 'Dye-sensitized nanocrystalline $TiO_{2}$ solar cells based on ruthenium(II) phenanthroline complex photosensitizers', Langmuir, 17, 5992 (2001) https://doi.org/10.1021/la010343q
  37. J. Van de Lagemaat and A. J. Frank, 'Nonthermalized electron transport in dye-sensitized nanocrystalline $TiO_{2}$ films: Transient photocurrent and random-walk modeling studies', J. Phys. Chem. B, 105, 11194 (2001) https://doi.org/10.1021/jp0118468

Cited by

  1. A Study on the Design of Dye-sensitized Solar Cells Using Textile Photoelectrodes and Their Electrical Properties vol.52, pp.3, 2015, https://doi.org/10.12772/TSE.2015.52.199
  2. An Exploratory Study on the Applicability of Thin-Film Photovoltaic Cells for Auxiliary Power Supply of a Personal Rapid Transit (PRT) Vehicle vol.17, pp.2, 2014, https://doi.org/10.7782/JKSR.2014.17.2.94
  3. The characteristics of dye-sensitized solar cells using carbon nanotube in working and counter electrodes vol.27, pp.6, 2014, https://doi.org/10.5806/AST.2014.27.6.308