Development of a Virus Elution and Concentration Procedure for Detecting Norovirus in Cabbage and Lettuce

  • Moon, Aerie (Department of Biotechnology, Dongguk University) ;
  • Hwang, In-Gyun (Department of Food Microbiology, Korea Food & Drug Administration) ;
  • Choi, Weon-Sang (Department of Biotechnology, Dongguk University)
  • Published : 2009.04.30

Abstract

In this study, a rapid and efficient concentrating procedure that can be used for detecting viruses in vegetables was developed. The Sabin strain of poliovirus type 1 was used to evaluate the efficiency of virus recovery. The procedure included: (a) elution with 0.25 M threonine-0.3 M NaCl pH 9.5; (b) polyethylene glycol (PEG) 8000 precipitation; (c) chloroform extraction; (d) 2$^{nd}$ PEG precipitation; (f) RNA extraction; (g) reverse transcription-polymerase chain reaction (RT-PCR) combined with semi-nested PCR. The overall recoveries by elution/concentration were 29.0% from cabbage and 13.7% from lettuce. The whole procedure usually takes 18 hr. The overall detection sensitivity was 100 RT-PCR units of genogroup II norovirus (GII NoV)/25 g cabbage and 100 RT-PCR units of GII NoV/10 g lettuce. The virus detecting method developed in this study should facilitate the detection of low levels of NoV in cabbage and lettuce.

Keywords

References

  1. Koopmans M, von Bonsdorff C, Vinje J, de Medici D, Monroe S. Foodborne viruses. FEMS Microbiol. Rev. 26: 187-205 (2002) https://doi.org/10.1111/j.1574-6976.2002.tb00610.x
  2. Koopmans M, Duizer E. Foodborne viruses: An emerging problem. Int. J. Food Microbiol. 90: 23-41 (2004) https://doi.org/10.1016/S0168-1605(03)00169-7
  3. Green KY, Chanock RM, Kapikian AZ. Human caliciviruses. pp. 841-874. In: Fields Virology. 4th ed. Knipe DM, Howley PM, Grinnin DE, Lamb RA, Martin MA, Roizman B, Strauss SE (eds). Lippinocott Williams & Wilkins, Philadelphia, PA, USA (2001)
  4. Kageyama T, Shinohara M, Uchida K, Fukushi S, Hoshino FB, Kojima S, Takai R, Oka T, Takeda N, Katayama K. Coexistence of multiple genotypes, including newly identified genotypes, in outbreaks of gastroenteritis due to norovirus in Japan. J. Clin. Microbiol. 42: 2888-2905 (2004)
  5. CDC Fact sheet. Norovirus in healthcare facilities. Available from:http://www.cdc.gov/ncidod/dhqp/id_norovirusFS.html. Accessed July 18, 2005
  6. Zheng D, Ando TM, Fankhauser RL, Beard RS, Glass RI, Monroe SS. Norovirus classification and proposed strain nomenclature. Virology 346: 312-323 (2006) https://doi.org/10.1016/j.virol.2005.11.015
  7. Hutson AM, Atmar RL, Estes MK. Norovirus disease: Changing epidemiology and host susceptibility factors. Trends Microbiol. 12:279-287 (2004) https://doi.org/10.1016/j.tim.2004.04.005
  8. Wang Q, Costantini V, Saif LJ. Porcine enteric caliciviruses: Genetic and antigenic relatedness to human caliciviruses, diagnosis, and epidemiology. Vaccine 25: 5453-5466 (2007) https://doi.org/10.1016/j.vaccine.2006.12.032
  9. Hedberg CW, Osterholm MT. Outbreaks of food-borne and waterborne viral gastroenteritis. Clin. Microbiol. Rev. 6: 199-210 (1993) https://doi.org/10.1128/CMR.6.3.199
  10. Schwab KJ, Neill FH, Fankhauser RL, Daniels NA, Monroe SS, Bergmire-Sweat DA, Estes M, Atmar RL. Development of methods to detect 'Norwalk-like viruses' (NLVs) and hepatitis A virus in delicatessen foods: Application to a food-borne NLV outbreak. Appl. Environ. Microb. 66: 213-218 (2000) https://doi.org/10.1128/AEM.66.1.213-218.2000
  11. Sair AI, D'Souza DH, Moe CL, Jaykus LA. Improved detection of human enteric viruses in foods by RT-PCR. J. Virol. Methods 100:57-69 (2002) https://doi.org/10.1016/S0166-0934(01)00397-4
  12. Le Guyader FS, Schultz A, Haugarreau L, Croci L, Manula L, Duizer E, Lodder-Verschoor F, von Bonsdorff C, Suffredin E, van der Poel WMM, Reymundo R, Koopmans M. Round-robin comparison of the methods for the detection of human enteric viruses in lettuce. J. Food Protect. 67: 2315-2319 (2004) https://doi.org/10.4315/0362-028X-67.10.2315
  13. Thornton AC, Jennings-Conklin KS, McCormick MI. Noroviruses: Agents in outbreaks of acute gastroenteritis. Disaster Manag. Response 2: 4-9 (2004) https://doi.org/10.1016/S1540-2487(03)00130-5
  14. Guevremont E, Brassard J, Houde A, Simard C, Trottier Y. Development of an extraction and concentration procedure and comparison of RT-PCR primer systems for the detection of hepatitis A virus and norovirus GII in green onions. J. Virol. Methods 134:130-135 (2006) https://doi.org/10.1016/j.jviromet.2005.12.009
  15. Bidawid S, Farber JM, Sattar SA. Rapid concentration and detection of hepatitis A virus from lettuce and strawberries. J. Virol. Methods 88: 175-185 (2000) https://doi.org/10.1016/S0166-0934(00)00186-5
  16. Dubois E, Agier C, Traore O, Hennechart C, Merle G, Cruciere C, Laveran H. Modified concentra method for the detection of enteric viruses on fruits and vegetables by reverse transcriptase-polymerase chain reaction or cell culture. J. Food Protect. 65: 1962-1969 (2002) https://doi.org/10.4315/0362-028X-65.12.1962
  17. Rzezutka A, D'Agostino M, Cook N. An ultracentrifugation-based approach to the detection of hepatitis A virus in soft fruits. Int. J. Food Microbiol. 108: 315-320 (2006)
  18. Dubois E, Hennechart C, Deboosère N, Merle G, Legeay O, Burger C, Le Calve M, Lombard B, Ferre V, Traore O. Intra-laboratory validation of a concentration adapted for the enumeration of infectious F-specific RNA coliphage, enterovirus, and hepatitis A virus from inoculated leaves of salad vegetables. Int J. Food Microbiol. 108: 164-171 (2006) https://doi.org/10.1016/j.ijfoodmicro.2005.11.007
  19. Dubois E, Hennechart C, Ghislaine M, Burger C, Hmila N, Ruelle S, Perelle S, Ferrc V. Detection and quantification by real-time RTPCR of hepatitis A virus from inoculated tap waters, salad vegetables, and soft fruits: Characterization of the method performances. Int. J. Food Microbiol. 117: 141-149 (2007) https://doi.org/10.1016/j.ijfoodmicro.2007.02.026
  20. Lee S, Jang K, Woo G, Kwak H, Kim K. Development of protocol for the effective detection of feline calicivirus as norovirus surrogate in oyster and lettuce. Korean J. Food Sci. Technol. 39: 71-76 (2007)
  21. Papafragkou E, Plante M, Mattison K, bidawid S, Krthikeyan K, Farber JM, Jaykus L. Rapid and sensitive detection of hepatitis A virus in representative food matrices. Int. J. Food Microbiol. 147:177-187 (2008)
  22. Love DC, Casteel MJ, Meschke JS, Sobsey MD. Methods for recovery of hepatitis A virus (HAV) and other viruses from processed foods and detection of HAV by nested RT-PCR and TaqMan RT-PCR. Int. J. Food Microbiol. 126: 221-226 (2008) https://doi.org/10.1016/j.ijfoodmicro.2008.05.032
  23. Kim SR, Kim D, Kwon K, Hwang I, Oh M. Detection of norovirus in contaminated ham by reverse transcriptase-PCR and nested PCR. Food Sci. Biotechnol. 17: 651-654 (2008)
  24. Baert L, Uyttendaele M, Debevere J. Evaluation of viral extraction methods on a broad range of ready-to-eat foods with conventional and real-time RT-PCR for Norovirus GII detection. Int. J. Food Microbiol. 123: 101-108 (2008) https://doi.org/10.1016/j.ijfoodmicro.2007.12.020
  25. Shieh YC, Calci KR, Baric RS. A method to detect low levels of enteric viruses in contaminated oysters. Appl. Environ. Microb. 65:4709-4714 (1999)
  26. Mullendore JL, Sobsey MD, Shieh YC. Improved method for the recovery of hepatitis A virus from oysters. J. Virol. Methods 94: 25-35 (2001) https://doi.org/10.1016/S0166-0934(01)00263-4
  27. Ha S, Woo G, Kwak H, Hwang I, Choi WS. Simplified procedure for detection of poliovirus and norovirus in oysters. Korean J. Food Sci. Technol. 37: 1018-1023 (2005)
  28. Jee Y. Establishment of detection method for norovirus. Technical report. pp. 16-17. Korea Food & Drug Administration, Seoul, Korea (2005)
  29. Kojima S, Kageyama T, Fukushi S, Hoshino F, Shinohara M, Uchida K, Natori K, Takeda N, Katayama K. Group-specific PCR primers for detection of Norwalk-like viruses. J. Virol. Methods 100: 107-114 (2002) https://doi.org/10.1016/S0166-0934(01)00404-9
  30. Kim S, Cheon D, Kim J, Lee D, Jheong W, Heo Y, Chung H, Jee Y, Lee J. Outbreaks of gastroenteritis that occurred during school excursions in Korea were associated with several waterborne strains of norovirus. J. Clin. Microbiol. 43: 4836-4839 (2005) https://doi.org/10.1128/JCM.43.9.4836-4839.2005
  31. Hernandez FR, Monge C, Jiménez C, Taylor L. Rotavirus and hepatitis A virus in market lettuce (Latuca savita) in Costa Rica. Int. J. Food Microbiol. 37: 221-223 (1997) https://doi.org/10.1016/S0168-1605(97)00058-5
  32. Ward BK, Chenoweth CM, Irving LG. Recovery of viruses from vegetable surfaces. Appl. Environ. Microb. 44: 1389-1394 (1982)
  33. Leggit PR, Jaykus LA. Detection methods for human enteric viruses in the representative foods. J. Food Protect. 63: 1738-1744 (2000) https://doi.org/10.4315/0362-028X-63.12.1738
  34. Butot S, Putallaz T, Sânchez G. Procedure for rapid concentration and detection of enteric viruses from berries and vegetables. Appl. Environ. Microb. 73: 186-192 (2007) https://doi.org/10.1128/AEM.01248-06
  35. Le Guyader FS, Neill FH, Dubois E, Bon F, Loisy F, Kohli E, Pommepuy M, Atmar RL. A semiquantitative approach to estimate Norwalk-like virus contamination of oysters implicated in an outbreak. Int. J. Food Microbiol. 87: 107-112 (2003) https://doi.org/10.1016/S0168-1605(03)00058-8
  36. Rueckert RR. Picornaviridae: The viruses and their replication. pp. 609-654. In: Fields Virology. Fields BN, Knipe DM, Howley PM (eds). Lippincott-Raven Pub. Philadelphia, PA, USA (1996)
  37. Atmar RL, Neill FH, Romalde JL, Guyader FL, Woodley CM, Metcalf TG, Estes MK. Detection of Norwalk virus and hepatitis A virus in shellfish tissues with the PCR. Appl. Environ. Microb. 61:3014-3018 (1995)