Investigation of Antimicrobial Activity of Brown Algae Extracts and the Thermal and pH Effects on Their Activity

  • Lee, So-Young (Department of Food Science and Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Jin-Hee (Department of Food Science and Technology/Institute of Food Science, Pukyong National University) ;
  • Song, Eu-Jin (Department of Food Science and Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Koth-Bong-Woo-Ri (Department of Food Science and Technology/Institute of Food Science, Pukyong National University) ;
  • Hong, Yong-Ki (Department of Biotechnology, Pukyong National University) ;
  • Lim, Sung-Mee (Department of Food Science and Technology, Tongmyong University) ;
  • Ahn, Dong-Hyun (Department of Food Science and Technology/Institute of Food Science, Pukyong National University)
  • Published : 2009.04.30

Abstract

The antimicrobial activity of water and ethanol extracts from 30 species of algae was measured using the agar diffusion method and minimum inhibitory concentration (MIC) test. In agar diffusion method, the 95% ethanol extracts from 12 of the algae showed growth inhibition against the tested microorganisms. In particular, Ishige okamurai, Ecklonia stolonifera, Sargassum siliquastrum, Sargassum thunbergii, Colpomenia bullosa, and Ecklonia cava had strong antibacterial activities against Gram-positive bacteria at 4 mg/mL. In the results of the MIC test, S. siliquastrum showed the most antimicrobial activity, where its MIC values ranged from 0.005 to 0.0075% against Listeria monocytogenes, Clostridium perfringens, and Basillus subtilis. In the thermal stability test, for the ethanol extracts of I. okamurai, E. cava, S. siliquastrum, S. thunbergii, and C. bullosa, the extracts proved to maintain high antimicrobial activities when they were treated at $121^{\circ}C$ for 15 min. In the pH stability test, the antimicrobial activity of the S. siliquastrum ethanol extract was stable from pH 2 to 10, whereas the activity of the other species ethanol extracts were weakened under pH 10 against several microbes.

Keywords

References

  1. Kim YS, Shin DH. Researches on the volatile antimicrobial compounds from edible plants and their food application. Korean J. Food Sci. Technol. 35: 159-165 (2003)
  2. Ferrand C, Marc F, Fritsch P. Chemical and toxicological studies of products resulting from sorbic acid and methylamine interaction in food conditions. Amino Acids 18: 251-263 (2000) https://doi.org/10.1007/s007260050022
  3. Kim HY, Lee YJ, Kim SH, Kwon YK, Lee JY, Ha SC, Cho HY, Chang IS, Lee CW, Kim KS. Studies of the development of natural preservatives from natural products. Korean J. Food Sci. Technol. 31: 1667-1678 (1999)
  4. Naidu AS. Natural Food Antimicrobial Systems. CRC Press, New York, NY, USA. pp. 17-103, 185-253 (2000)
  5. Freese E, Sheu CW, Gallier SE. Function of lipophilic acids as antimicrobial food additives. Nature 241: 321-325 (1973) https://doi.org/10.1038/241321a0
  6. Fabian FW, Graham HT. Viability of thermophilic bacteria in the presence of varying concentrations of acid, sodium chloride, and sugars. Food Technol. -Chicago 7: 212-218 (1953)
  7. Cox NA, Mercuri AJ, Juven BJ, Thomson JE, Chew V. Evaluation of succinic acid and heat to improve the microbiological quality of poultry meat. J. Food Sci. 39: 985-987 (1974) https://doi.org/10.1111/j.1365-2621.1974.tb07292.x
  8. Buchanan RL, Shepherd AJ. Inhibition of Aspergillus parasiticus by thymol. J. Food Sci . 46: 976-977 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb15404.x
  9. Yin MC, Cheng WS. Inhibition of Aspergillus niger and Aspergillus flavus by some herbs and spices. J. Food Protect. 61: 123-125 (1998) https://doi.org/10.4315/0362-028X-61.1.123
  10. Montes-Belmont R. Carvajal M. Control of Aspergillus flavus in maize with plant essential oil and their components. J. Food Protect. 61: 616-619 (1998) https://doi.org/10.4315/0362-028X-61.5.616
  11. Ouattara B, Simard RE, Holley RA, Piette GJP, Begin A. Antibacterial activity of selected fatty acids and essential oil against six meat spoilage organisms. Int. J. Food Microbiol. 37: 155-162 (1997) https://doi.org/10.1016/S0168-1605(97)00070-6
  12. Awad NE, Selim MA, Saleh MM, Matloub AA. Seasonal variation of the lipoidal matters and hypolipidaemic activity of the red algae Corallina officinalis L. Phytother. Res. 17: 19-25 (2003) https://doi.org/10.1002/ptr.1005
  13. Ryu BH, Kim DS, Cho K, Sin DB. Antitumor activity of seaweeds agarne sarcoma-180. Korean J. Food Sci. Technol. 21: 595-600 (1989)
  14. Choi JS, Park HJ, Jung HA, Chung HY, Jung JH, Choi WC. A cyclohexanonyl bromophenol from the red alga Symphyocladia latiuscula. J. Nat. Prod. 63: 1705-1706 (2000) https://doi.org/10.1021/np0002278
  15. Liu JN, Yoshida Y, Wang MQ, Okai Y, Yamachita UB. B cell stimulating activity of seaweed extracts. Int. J. Immunopharmaco. 19: 135-142 (1997) https://doi.org/10.1016/S0192-0561(97)00016-7
  16. Sandsdalen E, Haug T, Stensvag K, Styrvold OB. The antibacterial effect of a polyhydroxylated fucophlorethol from the marine brown alga, Fucus vesiculosus. World J. Microb. Biot. 19: 777-782 (2000) https://doi.org/10.1023/A:1026052715260
  17. Xu N, Fan X, Yan X, Li X, Niu R, Tseng CK. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 62: 1221-1224 (2003) https://doi.org/10.1016/S0031-9422(03)00004-9
  18. Nadal NGM, Casillias CM, Rodriguez LV, Rodriguez JR, Vera LT. Antibiotic properties of marine algae-. Cymopolia barbara. Bot. Mar. 9: 121-126 (1966)
  19. Amico G, Oriente G, Piatelli M, Tringali C, Fattorusso E, Mango S, Mayol L. Diterpenes based on the dolabellane skeleton from Dictyota dichotoma. Tetrahedron 36: 1409-1414 (1980) https://doi.org/10.1016/0040-4020(80)85055-1
  20. Glombitza KW, Rosener HV, Vilter H, Rauwald HW. Antibiotics from algae. 8. Phloroglucinol from Phaeophycea. Planta Med. 24:301-303 (1973) https://doi.org/10.1055/s-0028-1099502
  21. Sieburth JM. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals. J. Bacteriol. 82:72-79 (1961)
  22. Fenical W, Sims JJ. Zonarol and isozonarol, fungitoxic hydroguinones from the brown seaweed Dictyopteris zonarioides. J. Organomet. Chem. 38: 2383-2386 (1973)
  23. Lim CW, Lee JS, Cho YJ. Structure and some properties of the antimicrobial compounds in the red alga, Symphyosladia latiscula. J. Korean Fish Soc. 33: 280-287 (2000)
  24. Kim SH, Lim SB, Ko YH, Oh MC, Park CS. Extraction yields of Hizikia fusiforme by solvents and their antimicrobial effects. Bull. Korean Fish Soc. 27: 462-468 (1994)
  25. Kim MS, Shin DH, Ahn ES. Screening of natural antimicrobial edible plant extract for dooboo, fish paste, makkoli spoilage microorganism. Korean J. Food Sci. Technol. 26: 733-739 (1994)
  26. Murakami M, Makabe K, Okada S, Yamaguchi K, Konosu S. Screening of biologically activity compounds in microalgae. Nippon Suisan Gakk. 54: 1035-1039 (1988) https://doi.org/10.2331/suisan.54.1035
  27. Perez GRM, Avila A, Perez GA, Martinez C, Martinez GC. Antimicrobial activity of some american algae. J. Ethnopharmacol. 29: 111-116 (1990) https://doi.org/10.1016/0378-8741(90)90104-2
  28. Bansemir A, Blume M, Schroder S, Lindequist U. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252: 79-84 (2006) https://doi.org/10.1016/j.aquaculture.2005.11.051
  29. Morales JL, Cantillo-ciau ZO, Sanchez-molina I, Mena-Rejon M. Screening of antibacterial and antifungal activity of six marine macroalgae from coasts of Yucatan peninsula. Pharm. Biol. 44: 632-635 (2006) https://doi.org/10.1080/13880200600897569
  30. Magallanes C, Cordoba C, Orozco R. Antimicrobial activity of ethanolic extracts of marine algae from central coast of Peru. Rev. Peru. Biol. 10: 125-132 (2003)
  31. Lemos TLG, Motos FJA, Alencar JW, Craveiro AA, Clark AM, McCheesney JD. Antimicrobial activity of essential oils of Brasillian plants. Phytother. Res. 4: 82-88 (1990) https://doi.org/10.1002/ptr.2650040210
  32. Nakamura S, Kato AM, Kobayashi K. New antimicrobial characteristics of lysozyme-dextran conjugate. J. Agr. Food Chem. 39: 647-650 (1991) https://doi.org/10.1021/jf00004a003
  33. Kubo I, Himejima M, Tsujimoto K, Muroi H, Ichikawa N. Antibacterial activity of crinitol and its potentiation. J. Nat. Prod. 55: 780-785 (1992) https://doi.org/10.1021/np50084a012
  34. Kang SY, Oh MJ, Shin JA. Antimicrobial activity of Korean marine algae against fish pathogenic bacteria. J. Fish Pathol. 18: 147-156 (2005)
  35. Choi OJ, Rhee HJ, Choi KH. Antimicrobial activity of Korean wild tea extract according to the degree of fermentation. J. Korean Soc. Food Sci. Nutr. 34: 148-157 (2005) https://doi.org/10.3746/jkfn.2005.34.2.148
  36. EI-Shenawy MA, Marth EH. Behavior of Listeria monosytogenes in the presence of sodium propionate. J. Food Microbiol. 8: 85-92 (1989) https://doi.org/10.1016/0168-1605(89)90084-6
  37. Park CS, Cha MS. Comparison of antibacterial activity of green tea extracts and preservation to the pathogenic bacteria. J. Korean Soc. Food Sci. Nutr. 13: 36-44 (2000)
  38. Kubo I, Himejima M, Tsujimoto K, Muroi H, Ichikawa N. Antibacterial activity of crinitol and its potentiation. J. Nat. Prod. 55: 780-785 (1992) https://doi.org/10.1021/np50084a012
  39. Macoto I, Jun M, Xiang T, Takayuki M, Kyoko H, Daishi S. Haruo S, Ushio S, Toshimitsu H. Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum, and a new chromene derivative converted from the plastoquinones. J. Biol. Pharm. Bull. 28: 374-377 (2005) https://doi.org/10.1248/bpb.28.374
  40. Nagayama K, Iwamura Y, Shibara T, Hirayama I, Nakamura T. Bactericidal activity phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemoth. 50: 889-893 (2002) https://doi.org/10.1093/jac/dkf222
  41. Horie S, Tsutsumi S, Takada Y, Kimura J. Antibacterial quinine metabolites from the brown alga Sargassum sagamianum. B. Chem. Soc. Jpn. 81: 1125-1130 (2008) https://doi.org/10.1246/bcsj.81.1125