DOI QR코드

DOI QR Code

Interlaminar Fracture Toughness of CFRP Laminates with Carbon Non-Woven Tissue Having Different Weights

무게가 상이한 탄소부직포가 삽입된 CFRP적층판의 층간파괴인성

  • 정성균 (서울산업대학교 기계공학과)
  • Published : 2009.04.30

Abstract

For the practical use of improved interlaminar fracture toughness by interleaving carbon non-woven tissue (CNWT), intelaminar fracture toughnesses of CFRP laminates with CNWT having different weights were experimentally investigated. A suitable weight of interleaved CNWT in CFRP laminates was discussed with Mode I and Mode II tests. Mode I and Mode II interlaminar fracture toughnesses (GIC and GIIC) were obtained by DCB and ENF tests. Six kinds of specimens with CNWT were prepared. The weights of CNWT per square meter for six types of specimens are $8g/m^2,\;10g/m^2,\;12g/m^2,\;16g/m^2,\;20g/m^2$, and $24g/m^2$, respectively. The mean GIC and GIIC values of six kinds of specimens were not substantially different from one another. Compared with the CFRP specimen, the mean GIC values of six kinds of specimens were slightly decreased. But the mean GIIC values increased tremendously at least twice by interleaving CNWT. It seems that there is no interrelationship between the interlaminar fracture toughnesses (GIC and GIIC) and the interleaving CNWT weights. Consequently, it would be desirable to use the CNWT of $8g/m^2$ among the six kinds of CNWTs to take advantage of the interlaminar fracture toughness improved by interleaving CNWT, because the CNWT of $8g/m^2$ is a lightweight and low-priced material.

탄소부직포(CNWT)의 삽입에 의해 개선되는 층간파괴특성을 활용하기 위하여, CNWT의 무게에 대한 층간파괴인성값(GIC 및 GIIC)의 변화를 비교함으로써 CFRP적층판에 삽입되는 적절한 CNWT의 무게를 세안하고자 실험적으로 검토하였다. Mode I 및 Mode II 층간파괴인성값(GIC 및 GIIC)은 DCB 실험과 ENF 실험에 의하여 얻어졌으며, 6종류($8g/m^2,\;10g/m^2,\;12g/m^2,\;16g/m^2,\;20g/m^2$$24g/m^2$)의 CNWT가 각각 삽입된 6종류의 시험편들이 준비되었다. 6종류의 CNWT가 삽입된 시험편들에 대하여, 평균적인 GIC는 거의 비슷하였고 CFRP시험편과 비교하여 약간 감소하였다. 무게가 다른 CNWT가 삽입된 시험편들의 Mode II 층간파괴인성값(GIIC) 역시 서로 비슷하였으나, CFRP 시험편의 Mode II 층간파괴 인성값에 비해서는 약 2배 이상 게 증가하였다. 탄소부직포의 무게에 따른 층간과괴인성값(GIC 및 GIIC)들 사이에는 각별한 상관관계가 되이지 않았으며, CNWT의 삽입에 의해 개선되는 층간파괴특성을 활용하기 위해서는 6종류의 CNWT 중에 경제적이고 무게가 가벼운 $8g/m^2$의 CNWT를 선택하는 것이 바람직하다고 제안한다.

Keywords

References

  1. F. Erich, "Carbon Fibers and Their Composites", United Nations Financing System for Science and Technology for Development, Springer-Verlag, Berlin
  2. M. M. Stevanovic and T. B. Stecenko, "Mechanical Behaviour of Carbon and Glass Hybrid Fiber Reinforced Polyester Composites," Journal of Material Science. Vol. 27, 1992, pp. 941-946 https://doi.org/10.1007/BF01197646
  3. J. K. Kim, C. Baillie, J, Poh and Y. W. Mai, "Fracture Toughness of CFRP with Modified Epoxy Resin Materials," Composites Science Technology, Vol. 43, 1992, pp. 283-297 https://doi.org/10.1016/0266-3538(92)90099-O
  4. N. Odagiri, H. Kishi and M. Yamashita, "Development of Torayca Prepreg P2302 Carbon Fiber Reinforced Plastic for Aircraft Primary Structural Materials," Advanced Composite Materials (in Japan). Vol. 5, 1996, pp. 249-252 https://doi.org/10.1163/156855196X00301
  5. F. Ozdil and L. A. Carlsson, "Model Interlaminar Fracture of Interleaved Graphite/Epoxy," Journal of Material Science, Vol. 26, 1992, pp. 432-459
  6. O. Ishai, H. Rosenthal, N, Sela and E. Drukker, "Effect of Selective Adhesive Interleaving on Interlaminar Fracture Toughness of Graphite/Epoxy Composite Laminates," Composites(A), Vol. 19, 1988, pp. 49-54 https://doi.org/10.1016/0010-4361(88)90543-5
  7. S. Yamashita, H. Hatta, T. Takei and T. Sugano, "Interlaminar Reinforcement of Laminated Composites by Addition of Orientated Whiskers in the Matrix," Journal of Composite Materials. Vol. 26, 1992, pp. 1254-1268 https://doi.org/10.1177/002199839202600902
  8. S. K. Cheong, S. H. Lee and S. G. Lim, "A Study on the Material Properties of Carbon Fiber Reinforced Composite Laminates with Non-Woven Carbon Mat," The First Asian-Australasian Conference on Composite Materials (ACCM-I), Japan, 1998, pp. 420.1-420.4
  9. S. H. Lee, H. Noguchi, Y. B. Kim and S. K. Cheong, "Effect of Interleaved Non-Woven Carbon Tissue on lnterlaminar Fracture Toughness of Laminated Composites: Part I-Mode II," Journal of Composite Materials, Vol. 36, 2002, pp. 2153-2168 https://doi.org/10.1177/0021998302036018981
  10. S. H. Lee, H. Noguchi, Y. B. Kim and S. K. Cheong, "Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part Il-Mode I," Journal of Composite Materials, Vol. 36, 2002, pp. 2169-2181 https://doi.org/10.1177/0021998302036018980
  11. S. H. Lee, H. Noguchi and S. K. Cheong, "Static Behavior Characteristics of Hybrid Composites with Non-Woven Carbon Tissue," Journal of Composite Materials. Vol. 37, 2003, pp. 233-252 https://doi.org/10.1177/0021998303037003424
  12. S. H. Lee, H. Noguchi and S. K. Cheong, "Fatigue Behavior Characteristics of Hybrid Composites with Non-Woven Carbon Tissue," Journal of Composite Materials, Vol. 37, 2003, pp. 253-268 https://doi.org/10.1177/0021998303037003992
  13. S. H. Lee, Y. Aono, H. Noguchi and S. K. Cheong, "Damage Mechanism of Hybrid Composites with Non-Woven Carbon Tissue Subjected to Quasi- Static Indentation Loads," Journal of Composite Materials, Vol. 37. 2003, pp. 333-349 https://doi.org/10.1177/0021998303037004334
  14. S. H. Lee, Y. Aono, H. Noguchi and S. K. Cheong, "Residual Compressive Failure Characteristics of Hybrid Composites with Non-Woven Carbon Tissue after Indentation Damage," Journal of Composite Materials, Vol. 38, 2004, pp. 1461-1477 https://doi.org/10.1177/0021998304043744
  15. S. H. Lee, J. H. Lee, S. K. Cheong and H. Noguchi, "A Toughening and Strengthening Technique of Hybrid Composites with Non-Woven Tissue," Journal of Materials Processing Technology, Vol. 207, 2008, pp. 21-29 https://doi.org/10.1016/j.jmatprotec.2007.12.047
  16. ASTM D5528-94, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Martrix Composites, 1994