Optimal Culture Conditions for MK1 Strain Isolated from Soft-Rotten Tissue of Neungee Mushroom (Sarcodon aspratus) and the Physico-Chemical Properties of the Purified Exopolysaccharide of MK1

능이버섯(Sarcodon aspratus) 무름병소에서 분리한 MK1 균주의 최적 성장조건과 정제된 균체외다당류의 특성

  • Ryu, Jeong-Eun (Department of Microbiology, Chungbuk National University) ;
  • Lee, Young-Nam (Department of Microbiology, Chungbuk National University)
  • 유정은 (충북대학교 자연과학대학 미생물학과) ;
  • 이영남 (충북대학교 자연과학대학 미생물학과)
  • Received : 2009.08.17
  • Accepted : 2009.10.30
  • Published : 2009.12.31

Abstract

MK1 strain, an obligate aerobic heterotrophic bacterium isolated from the rotten tissue of Neungee mushroom (Sarcodon aspratus), produces a copious amount of exopolysaccharide (EPS), which could evoke macrophage activation. Investigations on optimal culture conditions of MK1 and physical properties of MK1 EPS were made. Glucose, galactose, fructose, and sucrose supported well growth of MK1, but potato starch and dextrin did not. However, lactose seemed to be a less favorable carbon source. Optimal growth of MK1 was obtained at pH 7.0, $30^{\circ}C$, and 200 rpm with 2% glucose, and 0.2~0.05% $(NH_4)_2SO_4$. $EPS_{opt}$ obtained from an optimal growth condition constituted of carbon (37.1%), nitrogen (2.2%), oxygen (49.3%), and hydrogen (6.4%), but no sulfur. Paper chrogromatogram of the acid-hydrolysate of $EPS_{opt}$ suggested that MK1 EPS seemed to be hetropolysaccharide composed of a few number of monosaccharides including amino- and acidic-sugars. Its molecular mass determined by SDS-polyacrylamide gel electrophoresis varied from 14.8 to 47.9 kDa. Physical properties of $EPS_{glu}$ obtained from cell grown in glucose medium, such as relative viscosity ($_{rel}$) and crystalline morphology were rather affected by pH of the growth medium. Relative viscosity ($_{rel}$) of exopolysaccaride (0.1 g/ml) harvested from cells grown at medium pH ranging from 6.0 and 7.5 was 1.23 and 1.39, respectively. The freeze-dried exopolysaccharide obtained at low pH (6.0 and 6.5) was fine crystaloid and water-soluble, whereas those obtained at high pH (7.0 and 7.5) was rather gluey and less water-soluble.

능이버섯(Sarcodon aspratus)의 무름병소에서 분리한 MK1 균주는 절대호기성 타가영양 세균으로 거식세포의 활성을 유도하는 균체외다당류를 다량 생산한다. MK1의 최적 성장 조건과 MK1이 생산하는 균체외다당류의 몇가지 물리적 성질을 알아보았다. MK1은 glucose, galactose, fructose, sucrose를 탄소원으로 잘 이용하나 MK1의 lactose 이용은 다소 저조하였다. 한편 potato starch와 dextrin을 이용하지 못하였다. MK1은 pH 7.0, $30^{\circ}C$, 200 rpm, 2% glucose, 0.05~0.2% $(NH_4)_2SO_4$에서 최적 성장을 보였다. 최적 성장조건에서 얻은 균체외다당류($EPS_{opt}$)는 탄소(37.1%), 질소(2.2%), 산소(49.3%), 수소(6.4%)로 구성되었으며, 황(S)은 검출되지 않았다. 그리고 아미노당과 산성 당을 함유한 이종다당류로 여겨지며, SDS-polyacrylamide gel elctrophoresis로 분석한 $EPS_{opt}$의 분자량은 14.8~47.9 kDa였다. Glucose 배지에서 생산된 균체외다당류($EPS_{glu}$)의 점도를 측정한 바, pH 6.0과 7.5에서 얻은 것들(0.1 g/ml)의 상대 점도($\acute{\eta}_{rel}$)는 각각 1.23과 1.39이었다. 또한 형태 또는 질감에도 차이가 있었는데, 배지의 pH가 낮을수록 미세결정형을, pH가 높아질수록 끈끈한 질감을 보였다. 따라서 배지 pH가 균체외다당류의 물리적 성질에 영향을 주는 것으로 사료된다.

Keywords

References

  1. Arena, A., T.L. Maugeri, B. Pavone, D. Iannello, C. Gugliandolo, and G. Bisignano. 2006. Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int. Immunopharm. 6, 8-13 https://doi.org/10.1016/j.intimp.2005.07.004
  2. Arisa, S., A. del Moral, M.R. Ferrer, R. Tallon, E. Quesada, and V. B$\acute{e}$jar. 2003. Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7, 319-326 https://doi.org/10.1007/s00792-003-0325-8
  3. Cadwell, D.R. 1995. Microbial physiology and metabolism, pp.102-103. Wm. C. Brown Communications, Inc. Dubuque, Iowa, USA
  4. Castro, R., M.C. Piazzon, I. Zarra, J. Leiro, M. Noya, and J. Lamas. 2006. Stimulation of turbot phagocytes by Ulva rigida C. Agardh polysaccharides. Aquaculture 254, 9-20 https://doi.org/10.1016/j.aquaculture.2005.10.012
  5. Cerning, T., C. Bouillanne, and M. Landon. 1992. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J. Dairy Sci. 75, 692-699 https://doi.org/10.3168/jds.S0022-0302(92)77805-9
  6. Chang, M.W., Y.S. Kang, J.W. Hong, J.D. Kim, and J.Y. Kong. 1995. Production conditions of two polysaccharides from marine bacterium Zoogloea sp. Kor. J. Biothechnol. Bioeng. 10, 518-524
  7. Chen, N.Y., T.H. Hsu, F.Y. Lin, H.H. Lai, and J.Y. Wu. 2006. Effects on cytokine-stimulating activities of EPS from Tremella mesenterica with various carbon sources. Food Chem. 99, 92-97 https://doi.org/10.1016/j.foodchem.2005.07.023
  8. Choi, J.H., S.Y. Kim, D.K. Oh, and J.H. Kim. 1998. Optimization of culture conditions for production of a high viscosity polysaccharide, methylan, by Methylomonas organophilum from methanol. Kor. J. Appl. Microbiol. Biotechnol. 26, 244-249
  9. De Vuyst, L., F. Vanderveken, S. Van de Ven, and B. Degeest. 1998. Production and isolation of exopolysaccharides from Streptococcus thermophilus grown in milk medium and evidence for their growth-associated biosynthesis. J. Appl. Microbiol. 84, 1059-1068 https://doi.org/10.1046/j.1365-2672.1998.00445.x
  10. Degeest, B. and L. De Vuyst. 1999. Indication that the nitrogen source influences both amount and size and modeling of the bacterial growth and exopolysaccharide production in a complex medium. Appl. Environ. Microbiol. 65, 2863-2870
  11. Degeest, B., F. Mozzi, and L. De Vuyst. 2002. Effect of medium composition, temperature, and pH changes on exopolysaccharide yield and stability during Streptococcus thermophilus LY03 fermentations. Int. J. Food Microbiol. 79, 161-174 https://doi.org/10.1016/S0168-1605(02)00116-2
  12. Escalante, A., C. Axcher-Rodarte, M. Garc$\acute{i}$a-Garibay, and A. Ferr$\acute{e}$s. 1998. Enzymes involved in carbohydrate metabolism and their role on exopolysaccharide production in Streptococcus thermophilus. J. Appl. Microbiol. 84, 108-114 https://doi.org/10.1046/j.1365-2672.1997.00330.x
  13. Faber, E.J., P. Zoon, J.P. Kamerling, and J.F.G. Vliegenthart. 1998. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr. Res. 310, 269-276 https://doi.org/10.1016/S0008-6215(98)00189-X
  14. Gancel, F. and G. Novel. 1994. Exopolysaccharide production by Streptococcus salivarius subsp. thermophilus cultures. 1. Conditions of production. J. Dairy Sci. 77, 685-688 https://doi.org/10.3168/jds.S0022-0302(94)77000-4
  15. Gersten, D.M. 1996. Gel elecrtrophoresis of proteins: essential techniques, pp. 84-85, Wiley & Sons, Ltd., Chichester, UK
  16. Jang, J.H., S.K. Bae, B.J. Kim, S.D. Ha, and J.Y. Kang. 1998. Effects of fermentation condition on the production of the usual polysaccharides from marine bacterium Zoogloea sp. Kor. J. Biotechnol. Bioeng. 13, 303-307
  17. Jeong, O.J., H.S. Yoon, and Y.K. Min. 2001. Aroma characteristics of Neungee (Sarcodon aspratus). Kor. J. Food Sci. Technol. 22, 307-312
  18. Kim, J.B. and J.H. Ahn. 1993. The modification of the silver stain method in sodium dodecyl sulfate-polyamide gels for detecting lipopolysaccharides. J. Kor. Soc. Microbiol. 28, 193-198
  19. Kim, J.W., B.S. Moon, Y.M. Park, N.H. Yoo, I.J. Ryoo, N.T. Chinh, I.D. Yoo, and J.P. Kim. 2005. Structures and antioxidant activity of diketopiperazines isolated from the mushroom Sarcodon aspratus. J. Kor. Soc. Appl. Biol. Chem. 48, 93-97
  20. Kim, H.E., J.N. Park, W.S. Shin, J.S. Kim, S.C. Shin, and C.D. Koo. 2000. Suggestions for developing the cultivation technology of mycorrihizal mushrooms, pp. 58-62. Proc. 2nd Int. Sym. New Horizon of Biosci. Forest Product Field, Cheongju, Korea
  21. Kitazawa, H., T. Harata, J. Uemura, T. Saito, T. Kaneko, and T. Itoh. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii subsp. bulgaricus. Int. J. Food Microbiol. 40, 169-175 https://doi.org/10.1016/S0168-1605(98)00030-0
  22. Kitazawa, H., Y. Ishii, J. Uemura, Y. Kawai, T. Saito, T. Kaneko, K. Noda, and T. Itoh. 2000. Argumentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii subsp. bulgaricus. Food Microbiol. 17, 109-118 https://doi.org/10.1006/fmic.1999.0294
  23. Kwon, G.S., B.D. Yoon, and H.K. Joo. 1995. Cultural conditions of exopolysaccahride KS-1 produced by Bacillus polymyxa KS-1. Kor. J. Biotechnol. Bioeng. 10, 441-448
  24. Kumar, C.G., H.S. Joo, J.W. Choi, Y.M. Koo, and C.S Chang. 2004. Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Microb. Technol. 34, 673-681 https://doi.org/10.1016/j.enzmictec.2004.03.001
  25. Kumar, A.S., K. Mody, and B. Jha. 2007. Bacterial exopolysacchrides - a perception. J. Basic Microbiol. 47, 103-117 https://doi.org/10.1002/jobm.200610203
  26. Lee, H.K., J. Chun, E.Y. Moon, S.H. Ko, D.S. Lee, H.S. Lee, and K.S. Bae. 2001. Hahella chejuensis gen. nov., sp. nov., and extracellular-polysaccharide-producing marine bacterium. Int. J. Sys. Evol. Microbiol. 51, 661-666 https://doi.org/10.1099/00207713-51-2-661
  27. Lee, Y.N. and C.D. Koo. 2007. Identification of bacterial isolated from diseased Neungee mushroom, Sarcodon aspratus. J. Basic Microbiol. 47, 31-39 https://doi.org/10.1002/jobm.200610151
  28. Lee, Y.N., C.K. Lee, S.A. Im, and J.E. Ryu. Exopolysaccharide produced by MK1 strain isolated from diseased Neung-ee mushroom. Abstr. C005, p. 177, Proc. 2007 Int. Meet. Microbiol. Soc.Kor.
  29. Loaec, M., R. Olier, and J. Guezennec. 1997. Uptake of lead, cadmium, and zinc by a novel bacterial exopolysaccharide. Wat. Res. 31, 1171-1179 https://doi.org/10.1016/S0043-1354(96)00375-2
  30. Looijesteijn, P.J. and J. Hugenholtz. 1999. Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J. Biosci. Bioeng. 88, 178-182 https://doi.org/10.1016/S1389-1723(99)80198-4
  31. Masuko, T., A. Minami, N. Iwasaki, T. Majima, S.I. Nishimura, and Y.C. Lee. 2005. Carbohydrate analysis by a phenol-sulfuric and method in microplate format. Anal. Biochem. 339, 69-72 https://doi.org/10.1016/j.ab.2004.12.001
  32. Mata, J.A., V. Bejar, I. Llams, S. Aris, P. Bressollier, R. Tallon, M.C. Uradaci, and E. Quesada. 2006. Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res. Microbiol. 157, 827-835 https://doi.org/10.1016/j.resmic.2006.06.004
  33. Matsuyama, H., T. Kamesaki, R. Sasaki, H. Minami, and I. Yumato. 2003. Production of two types of exopolysaccaride by Novosphingobium rosa. J. Biosci. Bioeng. 95, 152-156 https://doi.org/10.1263/jbb.95.152
  34. Matsuyama, H., R. Sasaki, K. Kawasaki, and I. Yumoto. 1999. Production of a novel exopolysaccharide by Rahnella aquatilis. J. Biosci. Bioeng. 87, 180-183 https://doi.org/10.1016/S1389-1723(99)89009-4
  35. McKellar, R.C., J. van Geest, and W. Cui. 2003. Influence of culture and environmental conditions on the composition of exopolysaccharide produced by Agrobacterium radiobacter. Food Hydrocolloides 17, 429-437 https://doi.org/10.1016/S0268-005X(03)00030-4
  36. Miller, J.H. 1972. Experiments in Molecular Genetics. pp. 352-355. Cold Spring Harbor Lab. Press, New York, USA
  37. Mizuno, M., Y. Shiomi, K. Minato, S. Kawakami, H. Ashida, and H. Tsuchida. 2000. Fucogalactan isolated from Sarcodon aspratus elicits release of tumor necrosis factor-a and nitric oxide from murine macrophages. Immunopham. 46, 113-121 https://doi.org/10.1016/S0162-3109(99)00163-0
  38. Mozzi, F., G. Roll$\acute{a}$n, G.S. de Glori, and G.F. de Valdez. 2001. Effect of galactose and glucose on the exopolysaccharide production and the activities of biosynthetic enzymes in Lactobacillus casei CRL 87. J. Appl. Microbiol. 91, 160-167 https://doi.org/10.1046/j.1365-2672.2001.01367.x
  39. Nishimura-Uemura, J., H. Kitazawa, Y. Kawai, T. Itoh, M. Oda, and T. Saito. 2003. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1. Food Microbiol. 20, 267-273 https://doi.org/10.1016/S0740-0020(02)00177-6
  40. Ozdemir, G., N. Ceyhan, and E. Manav. 2005. Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Biores. Technol. 96, 1677-1682 https://doi.org/10.1016/j.biortech.2004.12.031
  41. Park, B.S., C.D. Koo, K.H. Ka, and Y.N. Lee. 2008. Effect of chitosan acetate on bacteria occurring on Neungee mushrooms, Sarcodon aspratus. Mycobiology 36, 249-254 https://doi.org/10.4489/MYCO.2008.36.4.249
  42. Petry, S., S. Furlan, M.J. Crepeau, J. Cerning, and M. Desmazeaud. 2000. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiol. 66, 3427-3431 https://doi.org/10.1128/AEM.66.8.3427-3431.2000
  43. Petry, S., S. Furlan, E. Waghorne, L. Saulnier, J. Cerning, and E. Maguin. 2003. Comparison of the thickening properties of four Lactobacillus delbrueckii subsp. bulgaricus strains and physicochemical characterization of their exopolysaccharides. FEMS Microbiol. Lett. 221, 285-291 https://doi.org/10.1016/S0378-1097(03)00214-3
  44. Ramus, J. 1977. Alcian blue: A quantitative aqueous assay for algal and sulfated polysaccharides. J. Phycol. 13, 345-348 https://doi.org/10.1111/j.1529-8817.1977.tb02939.x
  45. Silva, F.R., A.L. Vettore, E.L. Kemper, A. Leite, and P. Arruda. 2001. Fastidian gum: the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity. FEMS Microbiol. Lett. 203, 165-171 https://doi.org/10.1016/S0378-1097(01)00348-2
  46. Shin, H.G., Y.M. Choi, H.K. Kim, Y.C. Ryu, S.H. Lee, and B.C. Kim. 2007. Tenderization and fragmentation of myofibrillar proteins in bovine longissimus dorsi muscle using proteolytic extract from Sarcodon aspratus. Food Sci. Technol. 21, 1-7 https://doi.org/10.1016/j.lwt.2007.08.019
  47. Song, J.H., H.S. Lee, J.K. Hwang, J.W. Han, J.G. Ro, D.H. Keum, and K.M. Park. 2003. Physiological activity of Sarcodon aspratus extracts. Kor. J. Food Sci. Ani. Resour. 23, 172-179
  48. Stenesh, J. 1984. Experimental biochemistry, pp. 237-240. Allyn and Bacon Inc., Boston, MA, USA
  49. Sutherland, I.W. 1998. Novel and established applications of microbial polysaccharides. Tibtech. 16, 41-46 https://doi.org/10.1016/S0167-7799(97)01139-6
  50. Sutherland, l.W. 2001. The biofilm matrix an immobilized but dynamic microbial environment. Trends Microbiol. 9, 222-227 https://doi.org/10.1016/S0966-842X(01)02012-1
  51. Takei, T., M. Yoshida, M. Ohnishi-Kameyama, and M. Kobori. 2005. Ergosterol peroxide, and apoptosis-inducing component isolated from Sarcodon aspratus (Berk.) S. Ito. Biosci. Biotechnol. Biochem. 69, 212-215 https://doi.org/10.1271/bbb.69.212
  52. Tallon, R., P. Bressollier, and M.C. Uraci. 2003. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res. Microbiol. 154, 705-712 https://doi.org/10.1016/j.resmic.2003.09.006
  53. Toda, K., Y. Gotoh, T. Asakura, I. Yabe, and H. Furuse. 2000. Fluid viscosity of Aureobasidium pullulans cultures obtained at two different initial pH values. J. Biosci. Bioeng. 89, 258-261 https://doi.org/10.1016/S1389-1723(00)88829-5
  54. Vaningelgem, F., R.V. Meulen, M. Zamfir, J. Adriany, A.P. Laws, and L. de Vuyst. 2004. Streptococcus thermophilus ST111 produces a stable high-molecular-mass exopolysaccharides in milkbased medium. Int. Dairy J. 14, 857-864 https://doi.org/10.1016/j.idairyj.2004.03.007
  55. Vermani, M.V., S.M. Kelkar, and M.Y. Kamat. 1995. Production and optimization of certain growth parameters for an exopolysaccharide from Azotobacter vinelandii MTCC 2460 isolated from a plant rhizosphere. J. Ferment. Bioeng. 80, 599-602 https://doi.org/10.1016/0922-338X(96)87738-5
  56. Wang, H., X. Jiang, H. Mu, X. Liang, and H. Guan. 2007. Structure and protective effect of exopolysaccharide from Pantoea agglomerans strain KFS-9 against UV radiation. Microbiol. Res. 162, 124-129 https://doi.org/10.1016/j.micres.2006.01.011
  57. Welman, A.D. and I.S. Maddox. 2003. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 21, 269-274 https://doi.org/10.1016/S0167-7799(03)00107-0
  58. Yang, J.H., J.S. Eun, and J.D. Her. 1989. Studies on proteolytic enzyme preparation using Sarcodon aspratus extracts. J. Kor. Pharm. Sci. 19, 203-212
  59. Yang, T., M. Jia, J. Meng, H. Wu, and Q. Mei. 2006.Immunomodulatory activity of polysaccharide isolated from Angelica sinensis. Int. J. Biol. Macromol. 39, 179-184 https://doi.org/10.1016/j.ijbiomac.2006.02.013
  60. Yim, J.H., S.J. Kim, S.H. An, and H.K. Lee. 2004. Physicochemical and rheological properties of a novel emulsifier, EPS-R, produced by the marine bacterium Hahella chejuensis. Biotechnol Bioprocess Eng. 9, 405-413 https://doi.org/10.1007/BF02933066
  61. Yoo, S.H., E.J. Yoon, J. Cha, and H.G. Lee. 2004. Antitumor activity of levan polysaccharides from selected microorganisms. Int. J. Biol. Macromol. 34, 37-41 https://doi.org/10.1016/j.ijbiomac.2004.01.002
  62. Zhang, M., S.W. Cui, P.C. Cheung, and Q. Wang. 2007. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Food Sci. Technol. 18, 4-19 https://doi.org/10.1016/j.tifs.2006.07.013
  63. Zirk, N.M., S.F. Hashmi, and H.K. Ziegler. 1999. The polysaccharide portion of lipopolysaccharide regulates antigen-specific Tcell activation via effects on macrophage-mediated antigen processing. Infect. Immun. 67, 319-326