Transport of Selected Veterinary Antibiotics (Tetracyclines and Sulfonamides) in a Sandy Loam Soil: Laboratory-Scale Soil Column Experiments

토양컬럼을 이용한 테트라사이클린계 및 설폰아마이드계 항생물질의 이동특성 평가

  • Lee, Hyeon-Yong (Department of Biological Environment, Kangwon National University) ;
  • Lim, Jung-Eun (Department of Biological Environment, Kangwon National University) ;
  • Kim, Sung-Chul (Department of Biological Environment, Kangwon National University) ;
  • Kim, Kwon-Rae (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kwon, Oh-Kyung (National Academy of Agricultural Science, Rural Development Administration) ;
  • Yang, Jae-E. (Department of Biological Environment, Kangwon National University) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University)
  • 이현용 (강원대학교 자원생물환경학과) ;
  • 임정은 (강원대학교 자원생물환경학과) ;
  • 김성철 (강원대학교 자원생물환경학과) ;
  • 김권래 (농촌진흥청 국립농업과학원) ;
  • 권오경 (농촌진흥청 국립농업과학원) ;
  • 양재의 (강원대학교 자원생물환경학과) ;
  • 옥용식 (강원대학교 자원생물환경학과)
  • Received : 2009.08.21
  • Accepted : 2009.11.12
  • Published : 2009.12.31

Abstract

Antibiotics are biologically active substances and commonly used for therapeutic treatment of infectious disease in humans and for treating and protecting the health of animals. In recent years, antibiotics have attracted worldwide attention because of their side effects on the environment. Consequently, efforts have been made to monitor the residual of antibiotics in the environment. This study tested the mobility of tetracyclines and sulfonamides in soil and leachate through column experiments. The three tetracycline antibiotics showed higher mass recovery rates in all kinds of soils(28.00~44.11%) than in leachate(10.54~27.43%). This seems attributable to the high adsorption coefficient values($K_d$) of tetracyclines representing strong and active adsorbability to organic and mineral phases in soil, ending up relatively small amount being detected in surface water. By contrast, the sulfonamides(sulfamethazine and sulfathiazole) showed higher mass recovery rates in leachate(23.19~26.20%) compared to in soil(10.41~14.21%) due to lower adsorption coefficient values and higher mobility of sulfonamides, enabling easier movement to surface water through the runoff in the environment.

항생물질은 기생충의 박멸, 질병의 예방과 치료, 생장촉진 등을 목적으로 이용되는 생리적 활성도가 높은 물질이다. 항생물질은 투여량의 20~30% 만이 사용되며 나머지는 배출되기 때문에 과량 사용시 환경으로 유입되어 내성 박테리아의 출현을 야기할 수 있다. 최근 들어 수질에서 잔류 항생물질에 대한 모니터링 연구가 활발히 진행되고 있으나 국내의 경우 토양에 관한 연구는 전무한 실정이다. 본 연구에서는 국내 사용량이 높은 tetracycline 계열 및 sulfonamide 계열 항생물질을 선정하여 토양 컬럼에서 토양 깊이별 그리고 침출수로의 이동성을 평가하였다. 항생물질 중 tetracycline 계열 3종(tetracycline, chlortetracycline, oxytetracycline)은 토양에서의 질량 회수율이 28.00~44.11%로 나타나 침출수의 질량 회수율 (10.54~27.43%) 보다 높게 조사되었다. 이는 tetracycline 계열 항생물질의 높은 흡착계수($K_d$)로 인해 점토광물 및 양이온과 강하게 흡착함으로서 침출수에는 소량이 검출된 것으로 판단되었다. 한편 sulfonamide 계열 2종(sulfamethazine와 sulfathiazole)은 침출수에서의 질량 회수율이 23.19~26.20%로 토양의 질량회수율(10.41~14.21%)보다 높게 나타났다. 이는 sulfonamide 계열 항생물질이 상대적으로 낮은 흡착계수 값을 지녀 토양에서의 이동성이 높기 때문으로 판단되었고 환경중 유거수(runoff)를 통해 쉽게 이동할 수 있음을 알 수 있었다.

Keywords

References

  1. Tolls, J.,“Sorption of veterinary pharmaceuticals in soils: A reiview,” Environ. Sci. Technol., 35(17), 3397-3406(2001) https://doi.org/10.1021/es0003021
  2. 손희종, 정종문, 황영도, 노재순, 유평종, “활성탄 재질 및 사용연수에 따른 Tetracycline계 항생물질 흡착특성,” 대한환경공학회지, 30(9), 925-932(2008)
  3. 식품의약품안전청, 축산 항생제내성 및 항생제 사용실태 조사, 국립수의과학검역원 연구결과보고서(2007)
  4. Jorgensen, S. E., and Halling-Sorensen, B., “Drugs in the environment,” Chemosphere, 40(7), 691-699(2000) https://doi.org/10.1016/S0045-6535(99)00438-5
  5. Seo, Y. H., Choi, J. K., Kim, S. K., Min, H. K., and Jung, Y. S., “Prioritizing environmental risks of veterinary antibiotics based on the use and the potential to reach environment,” Korean Journal of Soil Science Fertilizer, 40(1), 43-50(2007)
  6. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., and Buxton, H. T., “Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance,” Environ. Sci. Technol., 36(6), 1202-1211(2002) https://doi.org/10.1021/es011055j
  7. 이현용, 임정은, 권오경, 김성철, 양재의, 옥용식, “토양 및 수질 중 항생물질 처리기술에 대한 최근 연구동향,” 농생명과학연구, 20, 45-54(2009)
  8. Haggard, B. E., Galloway, J. M., Green, W. R., and Meyer, M. T., “Pharmaceuticals and other organic chemicals in selected northcentral and northwestern Arkansas streams,” J. Environ. Qual., 35(4), 1078-1087(2006) https://doi.org/10.2134/jeq2005.0248
  9. Lin, A. Y. C., Yu, T. H., and Lin, C. F., “Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan,” Chemosphere, 74(1), 131-141(2008) https://doi.org/10.1016/j.chemosphere.2008.08.027
  10. Choi, K., Kim, Y., Park, J., Park, C. K., Kim, M., Kim, H. S., and Kim, P., “Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea,” Sci. Total Environ., 405(1-3), 120-128(2008) https://doi.org/10.1016/j.scitotenv.2008.06.038
  11. Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., and Snyder, S. A., “Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters,” Water Res., 41(5), 1013-1021(2007) https://doi.org/10.1016/j.watres.2006.06.034
  12. 옥용식, 작물재배환경에서 중금속 및 항생물질의 안정성 평가, 농업과학기술개발공동연구사업 연차보고서, 농촌진흥청 (2008)
  13. 김성철, “환경에 잔류하는 항생제의 모니터링 및 이동, 그리고 거동에 대한 연구,” 2008 한국환경농학회 학술논문 발표대회 초록집, 한국환경농학회, 무주, pp. 91-92(2008)
  14. 김성철, 이현용, 임정은, 김종진, 김동국, 용석호, 권오경, 양재의, 옥용식, “돈분 퇴비의 부숙화 정도에 따른 잔류항생제의 저감효율 평가,” 2008 대한환경공학회 추계학술연구발표회 논문 요약집, 대한환경공학회, 서울, pp. 169(2008)
  15. 임정은, 김성철, 이현용, 권오경, 양재의, 옥용식, “국내 우분 퇴비화 시설 인근 농경지 및 수계 중 Tetracycline 및 Sulfonamide 계열 항생물질의 분포특성,” 대한환경공학회지, 31(10), 845-854
  16. Kim, S. C., and Carlson, K., “Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS,” Anal. Bio. Chem., 387(4), 1301-1315(2007) https://doi.org/10.1007/s00216-006-0613-0
  17. Kim, S. C., "Occurrence, fate, and transport of human and veterinary antibiotics in the watershed," Ph.D thesis, , Colorado State University, Fort Collins, Colorado, USA(2006)
  18. Rab${\o}$lle, M., and Spliid, N. H., “Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil,” Chemosphere, 40(7), 715-722(2000) https://doi.org/10.1016/S0045-6535(99)00442-7
  19. Diaz-Cruz, M. S., and Barcelo, D., “Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry,” Anal. Bio. Chem., 386(4), 973-985(2006) https://doi.org/10.1007/s00216-006-0444-z
  20. Sithole, B. B., and Guy, R. D., “Models for oxytetracycline in aquatic environments. I. Interaction with bentonite clay systems,” Water, Air, and Soil Pollut., 32(3-4), 303-314(1987) https://doi.org/10.1007/BF00225116
  21. Sithole, B. B., and Guy, R. D., “Models for oxytetracycline in aquatic environments. II. Interactions with humic substances,” Water, Air, and Soil Pollution, 32(3-4), 315-321(1987) https://doi.org/10.1007/BF00225117
  22. Maia, P. P., da Silva, E. C., Rath, S., and Reyes, F. G. R., “Residue content of oxytetracycline applied on tomatoes grown in open field and greenhouse,” Food Control, 20(1), 11-16(2009) https://doi.org/10.1016/j.foodcont.2008.01.007
  23. Migliore, L., Cozzolino, S., and Fiori, M., “Phytotoxicity to and uptake of enrofloxacin in crop plants,” Chemosphere, 52(7), 1233-1244(2003) https://doi.org/10.1016/S0045-6535(03)00272-8
  24. Thiele-Bruhn, S., “Pharmaceutical antibiotic compounds in soils - a review,” J. Plant Nutrition and Soil Science, 166(2), 145-167(2003) https://doi.org/10.1002/jpln.200390023
  25. Holten L$\ddot{u}$tzh${\o}$ft, H. C., Vaes, W. H., Freidig, A. P., Halling-S${\o}$ rensen, B., and Hermens, J. L., “1-Octanol/water distribution coefficient of oxolinic acid influence of pH and its relation to the interaction with dissolved organic carbon,” Chemosphere, 40(7), 711-714(2000) https://doi.org/10.1016/S0045-6535(99)00441-5
  26. Boxall, A. B. A., Blackwell, P., Cavallo, R., Kay, P., and Tolls, J., “The sorption and transport of a sulphonamide antibiotic in soil systems,” Toxicol. Lett., 131(1-2), 19-28(2002) https://doi.org/10.1016/S0378-4274(02)00063-2
  27. Karci, A., and Balcioglu, I. A., “Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey,” Sci. Total Environ., 407(16), 4652-4664(2009) https://doi.org/10.1016/j.scitotenv.2009.04.047
  28. Kim, Y., Jung, J., Kim, M., Park, J., Boxall, A. B. A., and Choi, K., “Prioritizing veterinary pharmaceuticals for aquatic environment in Korea,” Environ. Toxicol. Pharm., 26(2), 167-176(2008) https://doi.org/10.1016/j.etap.2008.03.006
  29. Kay, P., Blackwell, P. A., and Boxall, A. B. A., “Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land,” Chemosphere, 60(4), 497-507(2005) https://doi.org/10.1016/j.chemosphere.2005.01.028
  30. Christian, T., Schneider, R. J., F rber, H. A., Skutlarek, D., Meyer, M. T., and Goldbach, H. E., “Determination of antibiotic residues in manure, soil, and surface waters,” Acta hydrochimica et hydrobiologica, 31(1), 36-44(2003) https://doi.org/10.1002/aheh.200390014
  31. Halling-S􀝚rensen, B., Sengel􀝚v, G., Ingerslev, F., and Jensen, L. B., “Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes,” Arch. Environ. Contam. Toxicol., 44(1), 7-16(2003) https://doi.org/10.1007/s00244-002-1234-z
  32. Ingerslev, F., and Halling-S􀝚rensen, B., “Biodegradability properties of sulfonamides in activated sludge,” Environ. Toxicol. Chem., 19(10), 2467-2473(2000) https://doi.org/10.1002/etc.5620191011
  33. 한국환경정책평가연구원(KEI), 의약물질의 환경위해성 평가체계 구축 방안, 연구보고서(2006)
  34. Loftsson, T., and Hreinsdottir, D. “Determination of aqueous solubility by heating and equilibration: a technical note,” AAPS PharmSciTech, 7(1), E1-E4(2006) https://doi.org/10.1208/pt070101
  35. Kim, S. C., and Carlson, K., “Temporal and spatial treands in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices,” Environ. Sci. Technol., 41(1), 50-57(2007) https://doi.org/10.1021/es060737+