Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff

Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석

  • Lee, Jun-Ho (Department of Environmental Engineering, Chungju National University) ;
  • Bang, Ki-Woong (Division of Civil, Environmental and Urban Engineering, Hanbat National University) ;
  • Hong, Sung-Chul (Department of Environmental System Engineering, Pusan National University)
  • 이준호 (충주대학교 환경공학부) ;
  • 방기웅 (한밭대학교 토목.환경.도시공학부) ;
  • 홍성철 (부산대학교 환경시스템공학과)
  • Received : 2009.10.01
  • Accepted : 2009.10.24
  • Published : 2009.11.30

Abstract

Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Hydrocyclone은 높은 수면적부하율 운전이 가능하고, 구동부분이 없고, 운전 및 유지관리비가 적게 소요되어 미세입자물질제거에 효과적인 장치로 다양한 산업 분야에서 활용되고 있다. Hydrocyclone에 나선형 유입부를 통해 직각으로 유입되어 중력이 아닌 원심력에 의해 입자물질이 하부배출구로 분리되고 처리수는 vortex finder를 통해 배출된다. 입자분리에 hydrocyclone은 많은 장점을 가지고 있음에도 불구하고 도시지역 강우유출수 처리사례는 드문 실정이다. 본 연구에서는 변형된 hydrocyclone과 perlite 여재를 조합한 hydrocyclone filter (HCF)을 이용하여 강우유출수내 미세입자의 제거능을 분석하였다. 입자물질들은 인공입자들을 이용하여 강우유출수내 입자농도를 모의 실험하였다. 인공입자들을 물에 분산시켜 강우유출수를 재현하였는데 사용한 입자들은 이온교환 수지, 도로측구 퇴적물질, 상업지역 맨홀퇴적물질, 그리고 실리카겔 등이다. 하부배출부와 vortex finder 구조를 달리하여 HCFopen system과 HCF-closed system으로 구분하여 처리능을 분석하였다. HCF장치는 아크릴 수지를 이용하였는데 hydrocyclone의 직경은 120 mm이고 여과조의 직경은 250 mm이고 전체적인 높이는 800 mm로 제작하였다. 운전조건별 유입수 농도와 입경을 다양하게 적용하였고 SS와 COD농도를 분석하여 처리효율을 산정하였다. HCF-open system의 경우 운전 가능한 최대 수면적부하율은 700 $m^3/m^2$/day이었고 HCF-closed system의 경우 수면적부하율 1,200 $m^3/m^2$/day까지이다. HCF-open system 운전결과 HCFclosed system에 비교하여 평균 수면적부하율은 2배 이상 높게 운전이 가능하며 처리효율도 8~20% 이상 향상되는 것으로 분석되었다. 또한 유입수 SS농도가 높을수록 처리효율이 증가하며, 입경이 클수록 수면적부하율의 변화에 대한 처리효율의 영향이 적은 것으로 분석되었다. HCF-closed system의 실험을 통한 수면적부하율 변화에 대한 실리카겔입자의 제거 효율과 CFD입자추적기법을 이용한 예측 처리효율을 비교한 결과 CFD에 예측효율이 실제실험결과와 비교하여 다소 높게 나타나지만 처리효율의 경향은 매우 유사하게 나타나 CFD추적기법을 이용한 HDS유형 처리장치 설계 시 유용한 도구로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Gupta, R., Kaulaskar, M. D., Kumar, V., Sripriya, R., Meikap, B. C., and Chakraborty., “ Studies on the understanding mechanism of ait core and vortex formation in a hydrocyclone,”Chem. Eng. J., 144,153-166(2008) https://doi.org/10.1016/j.cej.2008.01.010
  2. Wang, B., Chu, K. W., and Yu, A. B., “Numerical study of particle-fluid flow in a hydrocycloen,”Ind. Eng. Chem. Res., 46, 4695-4705(2007) https://doi.org/10.1021/ie061625u
  3. Neru, R. K. R., and Yoshida, H., “ Comparison of separation performance between single and two inlets hydrocyclones,”Adv. Power Technol., in press(2008)
  4. Bergstr m, J., and Vomhoff, H., “Experimental hydrocyclone flow field studies,”Sep. Puri. Technol., 53, 8-20(2007) https://doi.org/10.1016/j.seppur.2006.09.019
  5. Dwari, R. K., Biswas, M. N., and Meikap, B. C., “Performance characteristics for particles of sand FCC and fly ash in a novel hydrocyclone,”Chem. Eng. Sci., 59, 671-684(2004) https://doi.org/10.1016/j.ces.2003.11.015
  6. Pandit, H. P., Shakya, N. M., Stole, H., and Garg, N. K., “Hydraulic and sediment removal performance of modified hydrocyclone,”Miner. Eng., 22, 412-414(2009) https://doi.org/10.1016/j.mineng.2008.09.005
  7. Field, R., and O'Connor T. P . , “Swirl technology : Enhancement of design, evaluation, and application,”J. Environ. Eng., 122(8), 741-748(1996) https://doi.org/10.1061/(ASCE)0733-9372(1996)122:8(741)
  8. Chu, L. Y., Chen, W. M., and Lee, X. Z., “Effect of structural modification on hydrocyclone performance,” Sepa. Puri. Technol., 21, 71-86(2000) https://doi.org/10.1016/S1383-5866(00)00192-1
  9. Evans, W. K., Suksangpanomrung, A., and Nowakowski, A. F., “The simulation of the flow within a hydrocyclone operating with an air core and with an inserted metal rod,” Chem. Eng. J., 143, 51-61(2008) https://doi.org/10.1016/j.cej.2007.12.023
  10. Mart nez, L. F., Lav n, A. G., Mahamud, M. M. and Bueno, J. L., “Vortex finder optimum length in a hydrocyclone separation,”Chem. Eng. Process., 47, 192-199(2008) https://doi.org/10.1016/j.cep.2007.03.003
  11. Saget, A., Chebbo, C., and Betrand, J. L., “The first flush in sewer systems,”Water Sci. Technol., 33, 101-108(1996)
  12. Lee, J. H., Bang, K. W., Ketchum, L. H., Choe, J. S., and Yu, M. J.,“ First flush analysis of urban storm runoff,”Sci. Total Environ., 293, 163-175(2002) https://doi.org/10.1016/S0048-9697(02)00006-2
  13. Zhao, B., Shen, H., and Kang, Y., “Development of a symmetrical spiral inlet to improve cyclone separator performance,”Powder Technol., 145, 47-50(2004) https://doi.org/10.1016/j.powtec.2004.06.001
  14. Yoshida, H., Norimoto, U., and Fukui, K., “Effect of blade rotation on particle classification performance of hydrocyclones,”Powder Technol., 164, 103-110(2006) https://doi.org/10.1016/j.powtec.2006.03.002
  15. Majumder, A. K., Shah, H., Shukla, P., and Barnwal, J. P., “Effect of operating variables on shape of “fish-hook” curves in cyclones,”Miner. Eng., 20, 204-206(2007) https://doi.org/10.1016/j.mineng.2006.10.002
  16. Bergstrom, J., and Vomhoff, H., “Experimental hydrocyclone flow field studies,”Sep. Puri. Technol., 53, 8-20(2007) https://doi.org/10.1016/j.seppur.2006.09.019
  17. Zhao, L., Jiang, M., and Wang, Y., “Experimental study of hydrocyclone under cyclic flow conditions for fine particle separation,”Sep. Puri. Technol., 59, 183-189(2008) https://doi.org/10.1016/j.seppur.2007.06.009
  18. Vieira, L. G. M., Silva, C. A., Damasceno, J. J. R., and Barrozo, M. A. S.,“ A study of the fluid dynamics behavior of filtering hydrocyclone,”Sep. Puri. Technol. , 58, 282-287(2007) https://doi.org/10.1016/j.seppur.2007.05.029
  19. Drumm, C., and Bart, H. J., “Hydrodynamics in a RDS extractor: Single and two-phase PIV measurements and CFD simulations,”Chem. Eng. Technol., 29(11), 1297-1302(2006) https://doi.org/10.1002/ceat.200600212
  20. Narasimha, M., Sripriya, R., and Banerjee, P. K., “CFD modelling of hydrocyclone-Prediction of cut size,”J. Miner. Process., 75, 53-68(2005) https://doi.org/10.1016/j.minpro.2004.04.008
  21. Puprasert, C., Hebrard, G., Lopez, L., and Aurelle, Y., “ Potential of using hydrocyclone and hydrocyclone euqipped with grit pot as a pre-treatment in runoff water treatment,”Chem. Eng. Process., 43, 67-83(2004) https://doi.org/10.1016/S0255-2701(02)00154-X
  22. 최상일, 박준형, 조장환“, Pilot 규모 실험을 통한 포장면 유출 빗물 처리에 관한 연구,”한국물환경학회지, 19(2), 233-237(2003)
  23. 정연규, 박규홍, 배범한, 조경숙, 김용학, 김성훈, 최태영, “Hydrocyclone을 이용한 준설 퇴적물의 입자분리와 유기물의 거동,”대한환경공학회 2001 춘계학술연구발표회 논문집, pp 25-25(2001)
  24. Lee J. H., Bang K. W., Choe J. S., and Joh S. J., “The hydrodynamic filter separator for removal of urban runoff,” Water Sci. Technol., 53(7), 243-2526(2006) https://doi.org/10.2166/wst.2006.229
  25. 이성재, 배범한, 박규홍, 강성원, 황규대, 지재성“, 준설퇴적물 분류 및 오염물질의 물리화학적 전처리,”대한환경공학회지, 25(1), 55-63(2003)
  26. 윤치호, 박용찬, 이동길, 권석기,“ 습식 사이클론을 이용한 망간단괴 슬러리의 고액 분리,”한국지구시스템공학회지, 41(4), 327-332(2004)
  27. Lee J. H., Bang K. W., Choe J. S., and Joh S. J.“, The hydrodynamic filter separator for removal of urban runoff,” Water Sci. Technol., 53(7), 243-2526(2006) https://doi.org/10.2166/wst.2006.229
  28. StormFilter, www.stormwater360.com (2009)
  29. Up-Flow Filter, www.hydrointernational.biz (2009)
  30. (주)이디테크 www.edtech.co.kr (2009)
  31. Merck www.merck.de (2009)
  32. Fluent 6.3.26 user's manual, ANSYS Inc, www.ansys.com(2008)