Absorption of Carbon Dioxide into Aqueous Potassium Salt of Serine

Serine 칼륨염 수용액의 이산화탄소 흡수특성

  • Song, Ho-Jun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Seung-Moon (Technical Research Laboratories, POSCO) ;
  • Lee, Joon-Ho (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jang, Kyung-Ryong (Green Growth Laboratory, Korea Electric Power Research Institute) ;
  • Shim, Jae-Goo (Green Growth Laboratory, Korea Electric Power Research Institute) ;
  • Kim, Jun-Han (Green Growth Laboratory, Korea Electric Power Research Institute)
  • 송호준 (연세대학교 화공생명공학과) ;
  • 이승문 (포스코 기술연구소) ;
  • 이준호 (연세대학교 화공생명공학과) ;
  • 박진원 (연세대학교 화공생명공학과) ;
  • 장경룡 (한전전력연구원 녹색성장연구소) ;
  • 심재구 (한전전력연구원 녹색성장연구소) ;
  • 김준한 (한전전력연구원 녹색성장연구소)
  • Received : 2008.10.13
  • Accepted : 2009.07.06
  • Published : 2009.07.31

Abstract

Aqueous potassium salt of serine was proposed as an alternative $CO_2$ absorbent to monoethanolamine (MEA) and its $CO_2$ absorption characteristics were studied. The experiment has been conducted using screening test equipment with NDIR type gas analyzer and vapor-liquid equilibrium apparatus. $CO_2$ absorption/desorption rate and net amount of $CO_2$ absorbed in cyclic process are the criteria to assess the $CO_2$ absorption characteristics in this study. Effective $CO_2$ loading of potassium salt of serine and MEA are 0.425 and 0.230 respectively. Cyclic capacities are 0.354 and 0.298 for potassium salt of serine and MEA. The absorption rate of the potassium serinate decreased sharply at $CO_2$ loading is 0.1 and were maintained approximately at half of MEA. To enhance the absorption rate of aqueous potassium salt of serine, small quantities of rate promoters, namely piperazine and tetraethylenepentamine were blended, so that rich $CO_2$ loading were increased by 13.7% and 18.7% respectively. The rich $CO_2$ loading of potassium salt of serine was 29.2% and 35.0% higher than those of aqueous sodium and lithium salt of serine, respectively. The absorption rate of potassium salt of valine and isoleucine which have similar molecular structures to serine were lower than that of serine because of the presence of bulky side group. Precipitation phenomena during $CO_2$ absorption were discussed by the aid of literatures.

지구온난화 원인물질인 이산화탄소의 신규 흡수제로 serine 칼륨염을 제안하였고, serine 칼륨염의 이산화탄소 흡수특성을 monoethanolamine(MEA)의 결과와 비교하고 평가하였다. 비분산적외선 방식의 $CO_2$ 분석기를 장착한 스크리닝 장치와 흡수평형 측정장치를 이용하여 각 흡수제의 $CO_2$ 흡수/탈거 성능을 속도론적 양적으로 분석하였다. Serine 칼륨염의 유효 $CO_2$ 부하능은 0.425로써 MEA의 0.230보다 거의 두 배나 높았으며, cyclic capacity는 각각 0.354와 0.298로써 serine 칼륨염이 더 우수하였다. 한편 serine 칼륨염의 반응속도는 $CO_2$ 부하능이 0.1 이상에서 급격히 감소하여 MEA의 절반을 유지하였다. 흡수속도 증대를 위해 반응 촉진제로 plperazme과 tetraethylenepentamine을 흔합한 결과 각 경우 포화 $CO_2$ 부하능이 13.7%, 18.7% 증대되었다. Serine의 카르복실기에 서로 다른 종류의 금속을 치환하였을 때 ($Li^+,\;Na^+\;K^+$), serine 칼륨염의 $CO_2$ 흡수량이 나트륨염과 리튬염에 비해 각각 29.2%, 35.0% 높았다. 비슷한 기본구조를 가진 아미노산인 valine과 isoleucine 칼륨염의 흡수실험 결과, 벌키한 side group의 영향으로 인해 흡수속도가 serine 칼륨염에 비해 다소 느렸다. 반응 중 발생하는 침전과 이의 긍정적 이용 방법을 문헌에 근거하여 제안하였다.

Keywords

References

  1. Song, H. J., Lee, S., Maken S., Park, J. J. and Park, J. W., “ Solubi lities of carbon dioxide in aqueous solutions of sodium glycinate," Fluid Phase Equilib. , 246(1-2), 1-5(2006) https://doi.org/10.1016/j.fluid.2006.05.012
  2. 심재구, 김 준한, 장경룡, 엄희문, “ Pi lot P l ant를 이용한 화력 발전소 배기가스 중 $CO_2$와 MEA의 흡수특성 대한환경공학회지, 25(12), 1557-1563(2003)
  3. Chakma, A. , "$CO_2$ capture processes - opportunities for improved energy efficiencies," Energy Converso Mgrnl., 38(supplement I), S51-S56( 1997) https://doi.org/10.1016/S0196-8904(96)00245-2
  4. Astarita, G., "Gas treating with chemical solvents," John Wiley & Sons, (1983)
  5. Lee, S., Song, H. J., Maken, S., H. c., Song, H. C. and Park, J. W. , "Physical so lubility and diffusivity of $N_2O$ and $CO_2$in aqueous sodium glycinate solutions," J. Chem. Eng. Data, 51(2), 504-509(2006) https://doi.org/10.1021/je0503913
  6. Kohl, A. L. and Nielsen, R. B., "Gas Purification," 5th ed., Gulf Publishing Company, (1997)
  7. Lee, S., Song, H. J., Maken S. and Park, J. W., "Kinetics of C02 absorption in aqueous sodium glycinate solutions," Ind. Eng. Chern. Res. , 46(5), 1578-1583(2007) https://doi.org/10.1021/ie061270e
  8. Kumar, P. S., Hogendoorn, J. A. and Versteeg, G. F., "Kinetics of the reaction of C02 with aqueous potassium sa lt of taurine and glycine," AIChE J , 49(1), 203-2 13(2003) https://doi.org/10.1002/aic.690490118
  9. Portugal, A. F., Derks, P. W. J., Versteeg, G. F., Maga lhaes, F. D. and Mendes, A., "Characterization of potassium glycinate for carbon dioxide absorption purposes," Chem Eng. Sci., 62(23), 6534-6547(2007) https://doi.org/10.1016/j.ces.2007.07.068
  10. Hook, R. J., "An investigation of some sterica lly hindered amines as potential carbon dioxide scrubbing compounds," Ind. Eng. Chern. Res., 36(5), 1779-1790(1997) https://doi.org/10.1021/ie9605589
  11. Chakraborty, A. K., Astarita, G. and Bischoff, K. B., "$CO_2$ absorpt ion in aqueous solutions of hindered amines," Chem. Eng. Sci., 41(4), 997-1003(1986) https://doi.org/10.1016/0009-2509(86)87185-8
  12. Tontiwachwuthikul, P., Meisen, A. and Lim, C. J., "Solubility of C02 in 2-amino-2-methyl-I-propanol solutions," J. Chem. Eng. Data, 36(1), 130-133(1991)
  13. Ma'mun, S., Svendsen, H. F., Hoff, K. A. and Juliussen, O., "Selection of new absorbe nts for carbon dioxide capture," Energy Converso Mgmt., 48(1), 251-258(2007) https://doi.org/10.1016/j.enconman.2006.04.007
  14. Smith, J. M., van Ness, H. C. and Abbott, M. M., "Introduction to Chemical Engineering Thermodynamics," McGraw Hill, (2001)
  15. Song, H. J., Lee, S., Park, K., Lee, J., Spah, D. C., Park, J. W. and Filburn, T., "Simplified estimation of regeneration energy of 30 wt % sodium g lycinate so lution for carbon dioxide absorption," Ind. Eng. Chem. Res., 47(24), 9925-9930(2008) https://doi.org/10.1021/ie8007117
  16. Lee, S., Fiburn, T. P., Gray, M., Park, J. W. and Song, H. J., "Screening test of so lid amine sorbents for $CO_2$ capture," Ind. Eng. Chem. Res., 47(19), 7419-7423(2008) https://doi.org/10.1021/ie8006984
  17. Brouwer, J. P., Feron, P. H. M. and ten Asbroek, N. A. M., "$CO_2$ absorption using precipitating amino acids in a spray tower," Proceeding of the international network for $CO_2$ capture: report on 9th workshop(2006)