Characteristics of Contamination and Fate for PCDD/Fs in Ambient Air, Cheongju

청주지역 대기 중 PCDD/Fs 오염특성 및 거동

  • Kim, Kyoung-Soo (Division of Environmental, Landscape Architecture & Civil Engineering, Cheongju University)
  • 김경수 (청주대학교 환경조경토목공학부)
  • Received : 2009.02.05
  • Accepted : 2009.04.28
  • Published : 2009.04.30

Abstract

To investigate the pollution levels and behavior of PCDD/Fs in ambient air, gaseous and particulate phase concentrations were measured at Cheongju city in 2008. The samples were collected at 3 sites (industrial, residential/commercial and rural region) by season (winter, spring and summer). The concentrations and TEQ concentrations of PCDD/DFs ranged from 0.73 to 2.43 pg/$m^3$ and from 0.007 to 0.122 pg TEQ/$m^3$, respectively. These levels were similar or lower than that of other domestic researches (from n.d. to 2.149 pg TEQ/$m^3$). The concentration of PCDD/Fs in particulate phase (from 54% to 98% against total concentration) were higher than that of gas phase. As a results of comparison of congener patterns and statistical analysis, PCDD/Fs was mainly influenced by a combustion process in ambient air, Cheongju city.

다이옥신의 대기 중 오염수준 및 거동을 조사하기 위해 청주시를 대상으로 3지점(공단, 주거/상업 및 농촌지역)에서 2008년 겨울철, 봄철, 및 여름철에 가스상과 입자상으로 나누어 시료를 채취하였다. 채취된 9개 시료의 대기 중 17개 다이옥신 이성질체의 농도범위는 0.73~2.48(평균 1.41) pg/$m^3$으로 검출되었으며, WHO 2005 TEQ 농도범위는 0.007~0.122(평균 0.051) pg TEQ/$m^3$으로 조사되었다. 이들 농도는 우리나라 다른 도시대기의 농도(불검출~2.149 pg TEQ/m3 )와 유사하거나 낮은 수준을 나타내었다. 대기 중 다이옥신은 대부분이 입자상태로 존재하고 있었으며(총 농도의 54~98%), 시료채취 시기나 지점에 관계없이 유사한 이 성질체 패턴을 나타내었다. 이성질체 분포 비교 및 통계적 해석결과, 청주시 대기 중 다이옥신은 특정한 오염원에 의한 영향은 미비하며 일반적인 연소공정에 의한 영향을 받고 있는 것으로 판단된다.

Keywords

References

  1. Junge, C. E., In:Suffet, I. H. (Ed.), Fate of pollutants in the air and water environments, Part I. Willey, New York, pp. 7-26(1977)
  2. Pankow, J. F., “An absorption model of the gas/aerosol partitioning involved in the formation secondary organic aerosol,” Atmos. Environ., 21, 185-188(1994)
  3. Finzio, A., Mackay, D., Bidleman, T. F., and Harner, T., “Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols,” Atmos. Environ., 31, 2289-2296(1997) https://doi.org/10.1016/S1352-2310(97)00013-7
  4. Harner, T. and Bidleman, T. F., “Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air,” Environ. Sci. Technol., 32, 1494-1502(1998) https://doi.org/10.1021/es970890r
  5. Oh, J. E., Choi, J. S., and Chang, Y. S., “Gas/particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in atmosphere; evaluation of predicting models,” Atmos. Environ., 35, 4125-4134(2001) https://doi.org/10.1016/S1352-2310(01)00201-1
  6. Park, J. S. and Kim, J. G., “Regional measurements of PCDD/PCDF concentrations in Korean atmosphere and comparison with gas-particle partitioning models,” Chemosphere, 49, 755-764(2002) https://doi.org/10.1016/S0045-6535(02)00375-2
  7. Lee, S. J., Ale, D., Chang, Y. S., Oh, J. E. and Shin, S. K., “Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs,” Environ. Pollut., 153, 215-222(2008) https://doi.org/10.1016/j.envpol.2007.07.026
  8. US EPA, Method 1613, Revision B:Tetra-through Octachlorinated dioxins and furans by isotope dilution HRGC/HRMS(1999)
  9. 김경수, 김종국, 신선경, 김경심, 송병주, “변압기 절연유 중 PCBs, CO-PCBs 및 PCDD/PCDFs 오염수준 및 이성체 분포,” 한국분석과학회지, 19(3), 263-271(2006)
  10. Van den Berg, M., Birnbaum, L. S., Denison, M., Vito, M. D., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tristscher, A., Tuomisto, J., Tysklind, M., Walker, and Peterson, R., “The 2005 World health organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds,” Toxicol. Sci., 93(2), 223-241(2006) https://doi.org/10.1093/toxsci/kfl055
  11. 국립환경과학원, 대기환경 중 다이옥신류 및 프탈레이트류 등 내분비계 장애물질 잔류실태 조사, 최종보고서 요약(2005)
  12. 국립환경과학원, 대기환경 중 다이옥신류 및 프탈레이트류 등 내분비계 장애물질 잔류실태 조사, 최종보고서 요약(2007)
  13. Lohmann, R. and Jones, K. C., “Dioxins and furans in air and deposition: a review of levels, behavior and processes,” Sci. Total Environ., 219, 53-81(1998) https://doi.org/10.1016/S0048-9697(98)00237-X
  14. Kim, S. C., Jeon, S. H., Jung, I. R., Kim, K. H., Kwon, M. H., Kim, J. H., Yi, J. H., Kim, S. J., You, J. C., and Jung, D. H., “Formation and emission status of PCDDs/PCDFs in municipal solid waste incinerators in Korea,” Chemosphere, 43, 701-707(2001) https://doi.org/10.1016/S0045-6535(00)00423-9
  15. Yu, B. W., Jin, G. Z., Moon, Y. H., Kim, M. K., Kyoung, J. D., and Chang, Y. S., “Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea,” Chemosphere, 62, 494-501(2006) https://doi.org/10.1016/j.chemosphere.2005.04.031
  16. Kim, K. S., Shin, S. K., Kim, K. S., Song, B. J., and Kim, J. G., “National monitoring of PCDD/DFs in environmental media around incinerators in Korea,” Environment International, 34, 202-209(2008) https://doi.org/10.1016/j.envint.2007.08.002
  17. Lohmann, R., Green, N. J. L., and Jones, K. C., “Detailed studies of the factors controlling atmospheric PCDD/DFs concentrations,” Environ. Sci. Technol., 33, 4440-4447 (1999) https://doi.org/10.1021/es990258t
  18. Capuano, F., Cavalchi, B., Martinelli, G., Pecchini, G., Renna, E., and Scaroni. I., “Environmental prospection for PCDD/PCDF, PAH,PCB and heavy metals around the incinerator power plant of Reggio Emilia town (Northern Italy) and surrounding main roads,” Chemosphere, 58, 1563-1569(2005) https://doi.org/10.1016/j.chemosphere.2004.11.065
  19. Masunaga, S., Takasuga. T., and Nakanishi, J., “Dioxin and dioxin-like PCB impurities in some Japanese agrochemical formulations,” Chemosphere, 44, 873-885(2001) https://doi.org/10.1016/S0045-6535(00)00310-6
  20. 김종국, 김경수, 김재식, 신선경, 정영희, 정일록, “이성체 정보를 이용한 토양 중 다이옥신 오염원 해석,” 대한환경공학회지, 27(3), 316-322(2005)
  21. 김경수, 송병주, 박석운, 김종국, “공단지역 대기 중 PCBs의 오염농도 및 발생원 추정,” 대한환경공학회지, 27(4), 385-389(2005)
  22. 박석운, 김경수, 김종국, “공단지역 주변 토양 중 PCBs 농도분포 및 발생원 추정에 관한 연구,” 대한환경공학회지, 29(5), 521-527(2007)