Removal Characteristics of Sulfonamide Antibiotic Compounds in Biological Activated Carbon Process

생물활성탄 공정에서의 Sulfonamide계 항생물질 제거특성

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 정종문 (부산광역시 상수도사업본부 수질연구소) ;
  • 노재순 (부산광역시 상수도사업본부 수질연구소) ;
  • 유평종 (부산광역시 상수도사업본부 수질연구소)
  • Received : 2008.06.16
  • Accepted : 2009.02.18
  • Published : 2009.02.28

Abstract

In this study, the effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of sulfonamide 5 species in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BACs, increasing EBCT or increasing water temperature increased the sulfonamide 5 species removal in BAC columns. In the coal-based BAC columns, sulfachloropyridazine (SCP), sulfamethazine (SMT) and sulfathiazole (STZ) removal efficiencies were 30~80% and sulfadimethoxine (SDM), sulfamethoxazole (SMX) removal efficiencies were 18~70% for 5~20 min EBCT at $25^{\circ}C$. The kinetic analysis suggested a first-order reaction model for sulfonamide 5 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for sulfonamide 5 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of sulfonamide 5 species ranging from 0.0094~0.0718 $min^{-1}$ and 9.7 to 73.7 min various water temperaturs and EBCTs in this study could be used to assist water utilities in designing and operating BAC filters for sulfonamide antibiotic compounds removal.

생물활성탄 재질별 sulfonamide계 항생물질 5종의 생분해능을 조사한 결과 유입수의 수온 $25^{\circ}C$에서 EBCT 변화에 따른 생물분해율을 평가한 결과, 석탄계 재질의 생물활성탄은 EBCT 5~20분에서 18~82%, 야자계나 목탄계의 경우는 11~67% 및 4~56%로 나타나 석탄계 재질의 생물활성탄에서 가장 높은 생물분해능을 나타내었다. Sulfonamide계 5종에 대한 물질별 생분해능을 평가한 결과, 석탄계 재질의 생물활성탄에서 5~20분의 EBCT에서 SCP, SMT 및 STZ는 30~80%, SDM과 SMX는 18~70% 정도의 생분해율을 나타내어 SDM과 SMX가 다른 3종 보다는 생물분해능이 낮은 것으로 나타났다. 유입수의 수온 상승에 따라 5~20분의 EBCT에서 생물분해율은 크게 증가하였고, 유입수의 수온이 $5^{\circ}C$일 경우 sulfonamide계 항생물질 5종에 대한 생물분해 속도 상수는 0.0094~0.0118 $min^{-1}$, 반감기는 58.7~73.7분으로 나타났으며, 수온이 $15^{\circ}C$$25^{\circ}C$일 경우는 생물분해 속도상수가 0.0307~0.0397 $min^{-1}$ 및 0.0468~0.0718 $min^{-1}$로 나타났고, 반감기 17.5~22.6분 및 9.7~14.8분으로 나타났다. 유입수의 수온이 $5^{\circ}C$에서 $15^{\circ}C$로 상승할 경우 sulfonamide계 항생물질 5종에 대한 생물분해 속도상수는 3.2~3.8배 정도 증가하였으며, 수온이 $15^{\circ}C$에서 $25^{\circ}C$로 상승할 경우는 1.5~1.9배 정도 증가하는 것으로 나타났다.

Keywords

References

  1. Daughton, C. G. and Ternes, T. A., "Pharmaceuticals and personal care products in the environment: agents of subtle change?," Environ. Health Perspect., 107, 907-942(1999) https://doi.org/10.2307/3434573
  2. Halling-Sorensen, B., Nielson, S. N., Lanzky, P. E., and Ingerslev, L. F., "Occurrence, fate and effects of pharmaceutical substances in the environment-a review," Chemosphere, 36(2), 357-393(1998) https://doi.org/10.1016/S0045-6535(97)00354-8
  3. Hileman, B., "Troubled waters: EPA, USGS try to quantify prevalence, risks of compounds from drugs, personal care products," Chem. Eng. News, 79, 31-33(2001)
  4. Heberer, T., "Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: a review of recent research data," Toxicol. Lett., 131, 5-17(2002) https://doi.org/10.1016/S0378-4274(02)00041-3
  5. Boxall, A. B. A., Kolpin, D., Halling-Sorensen, B., and Tolls, J., "Are veterinary medicines causing environmental risks," Environ. Sci. Technol., 36, 286-294(2003)
  6. Wollenberger, L., Halling-Sorensen, B., and Kusk, K. O., "Acute and chronic toxicity of veterinary antibiotics to Daphnia magna," Chemosphere, 40(7), 723-730(2000) https://doi.org/10.1016/S0045-6535(99)00443-9
  7. Chee-Sanford, J. C., Aminov, R. I., Krapac, I. J., Garrigues- Jeanjean, N., and Mackie, R. I., "Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities," Appl. Environ. Microbiol., 67, 1494-1502(2001) https://doi.org/10.1128/AEM.67.4.1494-1502.2001
  8. K$\"{u}$mmerer, K., "Significance of antibiotics in the environment," J. Antimicrobial Chemotherapy, 52, 5-7(2003) https://doi.org/10.1093/jac/dkg293
  9. 정석찬, 축산용 항생제 관리시스템 구축, 국가 항생제 내성안전관리 사업연구보고서, 식약청(2003)
  10. Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S. V., and Baumann, W., "Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil," Sci. Total Environ., 225, 135-141(1999) https://doi.org/10.1016/S0048-9697(98)00339-8
  11. Choi, K. J., Kim, S. G., Kim, C. W., and Kim, S. H., "Determination of antibiotic compounds in water by online SPE-LC/MSD," Chemosphere, 66, 977-984(2007) https://doi.org/10.1016/j.chemosphere.2006.07.037
  12. Rooklidge, S., Miner, R., Kassim, T., and Nelson, P., "Antimicrobial contaminant removal by multistage slow sand filtration," J. AWWA, 97(12), 92-100(2005)
  13. Choi, K. J., Kim, S. G., and Kim, S. H., "Removal of antibiotics by coagulation and granular activated carbon filtration," J. Hazard. Mater., 151(1), 38-43(2007) https://doi.org/10.1016/j.jhazmat.2007.05.059
  14. 손희종, 정종문, 노재순, 유평종, "GAC 공정에서의 sulfonamide계 항생물질 흡착특성," 대한환경공학회지, 30(4), 401-408(2008)
  15. Kim, S. D., Cho, J., Kim, I, S., Vanderford, B., and Snyder, S., "Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters," Water Res., 41, 1013-1021(2007) https://doi.org/10.1016/j.watres.2006.06.034
  16. Andreozzi, R., Canterino, M., Marotta, R., and Paxeus, N., "Antibiotic removal from wastewater: the ozonation of amoxicillin," J. Hazard. Mate., 122, 243-250(2005) https://doi.org/10.1016/j.jhazmat.2005.03.004
  17. Huber, M. M., Korhonen, S., Ternes, T. A., and von Gunten, U., "Oxidation of pharmaceuticals during water treatment with chlorine dioxide," Water Res., 39, 3607-3617(2005) https://doi.org/10.1016/j.watres.2005.05.040
  18. Snyder, S., Adham, S., Redding, A., Cannon, F., DeCarolis, J., Oppenheimer, J., Wert, E., and Yoon, Y., "Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals," Desalination, 202, 156-181(2007) https://doi.org/10.1016/j.desal.2005.12.052
  19. Choi, K. J., Kim, S. G., Son, H. J., Roh, J. S., Yoo. P. J., and Kim, S. H., "Comparison of oxidation methods and GAC adsorption in antibiotics removal," Proceedings of 4th IWA Conference on Oxidation Technologies for Water & Wastewater Treatment, Goslar, Germany(2006)
  20. Yang, S. H. and Carlson, K., "Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes," Water Res., 37, 4645-4656(2003) https://doi.org/10.1016/S0043-1354(03)00399-3
  21. 손희종, 류동춘, 김영웅, "회전 드럼형 광촉매 산화장치를 이용한 비스페놀-A 제거," 한국화학공학회지, 39(4), 493-500(2001)