A Comparison Study of Aerosol Samplers for PM10 Mass Concentration Measurement

PM10 질량농도 측정을 위한 시료채취기의 비교 연구

  • Park, Ju-Myon (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Koo, Ja-Kon (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Jeong, Tae-Young (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Kwon, Dong-Myung (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Yoo, Jong-Ik (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Seo, Yong-Chil (Department of Environmental Engineering, YIEST, Yonsei University)
  • Received : 2008.08.26
  • Accepted : 2009.02.27
  • Published : 2009.02.28

Abstract

A PM10 (aerodynamic diameter${\leq}$10 ${\mu}m$) sampler is used to quantify the potential human exposure to suspended particulate matter (PM) and to comply with the governmental regulation. This study was conducted to compare and evaluate the same PM10 cutpoint and different slopes between United States Environmental Protection Agency (USEPA) PM10 sampling criterion and American Conference of Governmental Industrial Hygienists/$Comit\acute{e}$ $Europ\acute{e}en$ de Normalization/International Organization for Standardization thoracic PM10 sampling criterion through theory and experiment. Four PM10 samplers according to the USEPA criterion and one RespiCon sampler in accordance with the thoracic PM10 criterion were used in the present study. In addition, one DustTrak monitor was used to measure real time PM10 mass concentrations. All six aerosol samplers were tested in a PM generation chamber using polydisperse fly ash. Theoretical mass concentrations were calculated by applying the measured particle size distribution characteristics (geometric mean = 6.6 ${\mu}m$, geometric standard deviation = 1.9) of fly ash to each sampling criterion. The measured mass concentrations through a chamber experiment were consistent with theoretical mass concentrations in that a RespiCon sampler with the thoracic PM10 criterion collected less PM than a PM10 sampler with the USEPA criterion. The overall chamber experiment results indicated, when a PM10 sampler was used as a reference sampler, that (1) a RespiCon sampler had a normalizing factor of 1.6, meaning that this sampler underestimated an average 60% of PM10 mass sampled from a PM10 sampler, and (2) a DustTrak real-time monitor using a PM10 inlet had a calibration factor of 2.1.

PM10(공기역학 직경${\leq}$10 ${\mu}m$) 시료채취기는 사람이 부유 먼지에 잠재적으로 노출되는 정도를 정량화하고 정부의 규제에 대응하기 위한 목적으로 사용된다. 본 연구는 동일한 PM10 분리한계 직경을 가지지만 다른 기울기를 가지는 미국 환경청의 PM10 시료채취 기준과 미국산업위생전문가협의회/유럽표준위원회/국제표준기구의 흉곽성 PM10 시료채취 기준을 이론과 실험을 통해 비교 평가하고자 수행되었다. 이를 위해 미국 환경청의 기준을 따르는 4개의 PM10 시료채취기와 흉곽성 PM10 기준과 일치하는 1개의 RespiCon 시료채취기를 비교 평가 수단으로 사용하였으며, 1개의 DustTrak 측정기를 PM10의 실시간 질량농도를 확인하기 위하여 사용하였다. 6개 시료채취기를 다양한 크기 분포를 가지는 비산재를 이용하여 입자 발생 챔버안에서 실험하였다. 이론적 질량농도는 측정된 비산재의 입자크기 분포 특성(기하평균 = 6.6 ${\mu}m$, 기하표준편차= 1.9)을 각 시료채취 기준에 적용하여 계산하였다. 챔버 실험을 통하여 측정된 질량농도 결과는 흉곽성 PM10 시료채취 기준을 가지는 RespiCon 시료채취기가 미국 환경청의 PM10 기준을 가지는 PM10 시료채취기보다 상대적으로 작은 질량농도를 측정함으로써 이론적 질량농도와 일치하였다. 전체적 챔버 실험 결과는 PM10 시료채취기를 기준 시료채취기로 사용하였을 때, (1) RespiCon 시료채취기는 PM10 시료채취기로 포집된 PM10 먼지 질량농도에 비해 평균 60% 정도 낮게 측정한 것을 의미하는 정규화계수 1.6으로 나타났으며 (2) PM10 유입구를 사용한 DustTrak 실시간 채취기는 2.1의 보정계수를 가지는 것으로 분석되었다.

Keywords

References

  1. 환경부, 대기환경보전법(2007)
  2. 환경부, 환경정책기본법 시행령(2006)
  3. American Conference of Governmental Industrial Hygienists, Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, ACGIH, USA, pp. 83-86(1996)
  4. Comit$\'{e}$ Europ$\'{e}$en de Normalisation, Workplace Atmospheres - Size Fraction Definitions for Measurement of Airborne Particles in the Workplace (CEN EN 481), Brussels, CEN, pp. 3-11(1993)
  5. International Organization for Standardization, Air Quality Particle Size Fraction Definition for Health-Related Sampling(ISO CD 7708), Geneva, ISO, pp. 3-6(1995)
  6. Buser, M., Parnell, C. B. Jr., Lacy, R. E., and Shaw, B. W., Inherent biases of PM10 and PM2.5 samplers based on the interaction of particle size and sampler performance characteristics, in Proceedings of ASAE, St. Joseph, MI, Paper No. 011167(2001)
  7. Pargmann, A. R., Parnell, C. B. Jr., and Shaw, B. W., Performance characteristics of PM2.5 samplers in the presence of agricultural dusts, in Proceeding of ASAE, St. Joseph, MI, Paper No. 014008(2001)
  8. Wang, L., Wanjura, J. D., Parnell, C. B. Jr., Lacey, R. E., and Shaw, B. W., “Performance characteristics of a low-volume PM10 sampler,” Transactions of the ASABE, 48(2), 739-748(2005)
  9. US Environmental Protection Agency Method IO-2: Integrated Sampling of Suspended Particulate Matter (SPM) in Ambient Air, Washington DC, pp. 1(1999)
  10. Hinds, W. C., “Ch 4: Particle size statistics,” Aerosol technology properties, behavior, and measurement of airborne particles. Wiley Inc., New York, USA, pp. 75-110(1999)
  11. US Environmental Protection Agency (USEPA), 40 CFR Part 53, “Subpart D - Procedures for testing performance characteristics of methods for PM10,” Ambient air monitoring references and equivalent methods, Washington DC(2000)
  12. McFarland, A. R., and Ortiz, C. A., Evaluation of prototype PM-10 inlets with cyclonic fractionators, in Proceeding of the 76th Annual Meeting of APCA, Atlanta, GA, Paper No. 33.5(1983)
  13. US Environmental Protection Agency (USEPA), 40 CFR Part 50, “Appendix B - Reference method for the determination of suspended particulate matter in the atmosphere(high-volume method),” National primary and secondary ambient air quality standards, Washington DC(1983)
  14. National Institute for Occupational Safety and Health, Particulates Not Otherwise Regulated, Total (NIOSH 0500), In: Schlecht, P. C. and O'Connor, P. F.(Eds.), NIOSH Manual of Analytical Methods, fourth ed. DHHS (NIOSH) Publication, Cincinnati, OH, pp. 94-13(1994)
  15. May, K. R., “The cascade impactor: An instrument for sampling coarse particles,” J. Scientific Instruments, 22, 187-195(1945) https://doi.org/10.1088/0950-7671/22/10/303
  16. Swanson, P. D., Muzzio, F. J. Annapragada, A., and Adjei, A., “Numerical analysis of motion and deposition of particles in cascade impactors,” International Journal of Pharmaceutics, 142, 33-51(1996) https://doi.org/10.1016/0378-5173(96)04643-1
  17. Mitchell, J. P. and Nagel, M. W., “Cascade impactors for the size characterization of aerosols from medical inhalers: their uses and limitations,” J. Aerosol Medicine, 16(4), 341-377(2003) https://doi.org/10.1089/089426803772455622
  18. Park, J-M., Rock, J.C., Wang, L., Seo, Y-C., Bhatnagar, A., Kim, S-H., “Performance Evaluation of Six Different Aerosol Samplers in a PM Generation Chamber,” Atmospheric Environment, 43, 280-289(2009) https://doi.org/10.1016/j.atmosenv.2008.09.028
  19. Turner, J. R. and Hering, S. V., “Greased and oiled substrates as bounce-free impaction surfaces,” J. Aerosol Science, 18, 215-224(1987) https://doi.org/10.1016/0021-8502(87)90057-7
  20. Dunbar, C., Kataya, A., and Tiangbe, T., “Reducing bounce effects in the Andersen cascade impactor,” International Journal of Pharmaceutics, 301, 25-32(2005) https://doi.org/10.1016/j.ijpharm.2005.04.039