Effects of Water Temperature on Oxygen Consumption in Starry Flounder Platichthys stellatus Reared in Seawater and Freshwater

해수 및 담수사육 강도다리 Platichthys stellatus의 산소소비에 미치는 수온의 영향

  • Jeong, Min-Hwan (Aquaculture Management Division, National Fisheries Research and Development Institute) ;
  • Byun, Soon-Gyu (East Sea Mariculture Research Center, National Fisheries Research and Development Institute) ;
  • Lim, Han-Kyu (Aquaculture Management Division, National Fisheries Research and Development Institute) ;
  • Min, Byung-Hwa (Aquaculture Management Division, National Fisheries Research and Development Institute) ;
  • Kim, Young-Soo (Department of Aquaculture, Pukyong National University) ;
  • Chang, Young-Jin (Department of Aquaculture, Pukyong National University)
  • Received : 2009.04.06
  • Accepted : 2009.09.08
  • Published : 2009.08.31

Abstract

The effects of water temperature on oxygen consumption (OC) of starry flounder Platichthys stellatus reared in seawater (SW) and freshwater (FW) was performed in closed water-recirculating system containing respiratory chamber. Fish acclimated in separate indoor tanks with SW (nine of fish used, $263.0{\pm}40.4$ g) or FW (nine of fish used, $265.8{\pm}34.8$ g) were sampled. The OC of starry flounder at $15^{\circ}C,\;20^{\circ}C$ and $25^{\circ}C$ were $74.4{\pm}17.0,\;85.9{\pm}15.8,\;98.3{\pm}11.4\;mg\;O_2\;kg^{-1}hr^{-1}$ in SW and $46.7{\pm}12.0,\;63.3{\pm}7.5,\;82.6{\pm}5.3\;mg\;O_2\;kg^{-1}hr^{-1}$ in FW, respectively, showing a linear increase in OC with water temperature. The OC of fish reared in both SW and FW clear diel rhythm, with lower values at daytime and higher values in the night, in accordance with light (09:00~21:00 hr) and dark (21:00~09:00 hr) phases of the diel cycle (12L : 12D) in water temperature at $15^{\circ}C$ and $20^{\circ}C$. However OC of fish reared in both SW and FW showed unclear diel rhythm with light and dark phases of the diel cycle in water temperature at $25^{\circ}C$. Starry flounder reared in FW had higher ventilation rates than those in SW, but SW had higher OC per breath than those in FW.

본 연구는 밀폐식 순환여과 시스템의 호흡측정실내에서 해수 및 담수사육 강도다리의 산소소비에 미치는 수온 영향을 조사하였다. 실험에 사용한 어류는 해수 및 담수에 각각 순화시킨 해수사육 강도다리(9마리, 평균체중 $263.0{\pm}40.4$ g)와 담수사육 강도다리(9마리, 평균체중 $265.8{\pm}34.8$ g)를 사용하였다. 수온 15, 20, $25^{\circ}C$에서 해수사육 강도다리의 산소소비량은 각각 $74.4{\pm}17.0,\;85.9{\pm}15.8,\;98.3{\pm}11.4\;mg\;O_2\;kg^{-1}hr^{-1}$, 담수사육 강도다리는 $46.7{\pm}12.0,\;63.3{\pm}7.5,\;82.6{\pm}5.3\;mg\;O_2\;kg^{-1}hr^{-1}$로 수온 상승 비례하여 증가하였다. 또한 수온 $15^{\circ}C$$20^{\circ}C$에서는 명기(09:00~21:00 hr)와 암기(21:00~09:00 hr)로 나누어진 광주기(12L : 12D)의 조건에서 해수 및 담수사육 강도다리 모두 명기에는 산소소비가 적고, 암기에는 산소소비가 많은 뚜렷한 일주리듬을 보였다. 하지만 수온 $25^{\circ}C$에서는 해수 및 담수사육 강도다리 모두 명기와 암기의 뚜렷하지 않은 산소소비 일주리듬을 보였으며, 수온 $20^{\circ}C$ 이상에서는 대사리듬이 흐트러지는 것으로 판단된다. 해수 및 담수사육 강도다리의 호흡률을 비교했을 때 담수사육 강도다리가 해수사육 강도다리보다 높았으나, 산소소비량은 해수사육 강도다리가 많았다.

Keywords

References

  1. 강주찬, 진 평, 이정식, 신윤경, 조규석. 2000. 날개망둑 Favonigobius gymnauchen 치어의 생존, 성장 및 산소소비율에 미치는 염분의 영향. 한국수산학회지. 33:408-412
  2. 김용억, 명정구, 김영섭, 한경호, 강충배, 김진구. 2001. 한국해산어류도감. 도서출판한글. 288pp
  3. 민병화, 노경언, 정민환, 강덕영, 최철영, 방인철, 장영진. 2006. 담수 및 해수사육 감성돔 Acanthopagrus schlegeli의 생리활성과 성장에 미치는 갑상선 호르몬의 효과. 한국양식학회지. 19:149-156
  4. 변순규, 이배익, 이종화, 구학동, 박상언, 윤성민, 황선영, 김이청, 한형균. 2007. 강도다리 Platichthys stellatus의 난발생과 자치어의 형태발달. 한국어류학회. 19:350-359
  5. 변순규, 정민환, 이종하, 이백익, 구학동, 박상언, 김이청, 장영진. 2008. 수온에 따른 강도다리 Platichthys stellatus의 산소소비 리듬. 한국수산학회지. 41:113-118 https://doi.org/10.5657/kfas.2008.41.2.113
  6. 소상영. 2007. 수온변화와 순화에 따른 무지개송어 Oncorhynchus mykiss (Walbaum)의 산소소비량. 군산대학교 석사학위논문. 한국. 45pp
  7. 임한규, 한형균, 이종하, 정민환, 허준욱. 2005. 단계적 염분변화가 striped bass 잡종(Morone chrysops×M. saxatilis)의 생리적 반응에 미치는 영향. 한국어류학회지. 17:46-48
  8. 장영진, 허준욱, 임한규. 2001. 순환여과 사육시스템에서 해수와 담수에 사육한 숭어(Mugil cephalus) 치어의 성장과 생존율. 한국양식학회지. 14:29-33
  9. 정문기. 1998. 한국어류도감. 일지사. 570pp
  10. 정민환, 김영수, 민병화, 장영진. 2007. 해수 및 담수사육 감성돔 Acanthopagrus schlegeli의 호흡측정 실내 수용개체수에 따른 산소소비 비교. 한국양식학회지. 20:121-126
  11. 추정, 장영진, 허준욱. 2000. 어린 숭어(Mugil cephalus)의 담수사육에서 염분흡착 사료가 성장, 생존율 및 체액의 조성에 미치는 영향. 한국양식학회지. 13:317-323
  12. Adams MB, MD Powell and GJ Purser. 2001. Effect of acute and chronic ammonia and nitrite exposure on oxygen consumption and growth of juvenile big bellied seahorse. J. Fish Biol. 58:848-860 https://doi.org/10.1111/j.1095-8649.2001.tb00535.x
  13. Chang YJ, MH Jeong, BH Min, WH Neill and LP Fontaine. 2005. Effects of photoperiod, temperature, and fish size on oxygen consumption in the black porgy (Acanthopagrus schlegeli). J. Fish. Sci. Tech. 8:142-150 https://doi.org/10.5657/fas.2005.8.3.142
  14. Chatelier A, DJ Mckenzie and G. Claireaux. 2005. Effects of changes in water salinity upon exercise and cardiac performance in the European seabass (Dicentrarchus labrax). Mar. Biol. 147:855-862 https://doi.org/10.1007/s00227-005-1624-7
  15. Claireaux G and J-P. Lagard$\grave{e}$re. 1999. Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. J. Sea Res. 42:157-168 https://doi.org/10.1016/S1385-1101(99)00019-2
  16. Dalla Valla AZ, R Rivas-Diaz and G Claireaux. 2003. Opercular differential pressure as a predictor of metabolic oxygen demand in the starry flounder. J. Fish Biol. 63:1578-1588 https://doi.org/10.1111/j.1095-8649.2003.00268.x
  17. Fanta-Feofiloff E, DRB Eiras, AT Boscardim and M Lacerda-Krambeck. 1986. Effect of salinity on the behavior and oxygen consumption of mugil curema (Pisces, Mugilidae). Physiol. Behav. 36:1029-1034 https://doi.org/10.1016/0031-9384(86)90475-0
  18. Horning WBI and RE Pearson. 1973. Growth temperature requirement and lower lethal temperature for juvenile smallmouth bass (Micropterus dolomieui). J. Fish. Res. Bd. Can. 30:1226-1230
  19. Iwama GK, A Takemura and K Takano. 1997. Oxygen consumption rates of tilapia in fresh water, sea water, and hypersaline sea water. J. Fish Biol. 51:886-894
  20. Kim WS, HT Huh, JH Lee and CH Koh. 1998. Effects of sudden changes on salinity on endogenous rhythm of the spotted sea bass Lateolabrax sp. Mar. Biol. 131:219-225 https://doi.org/10.1007/s002270050314
  21. Lucas MC and IG Priede. 1992. Utilization of metabolic scope in relation to feeding and activity by individual and grouped zebrafish, Brachydanio rerio (Hamilton-Buchanan). J. Fish Biol. 41:175-190 https://doi.org/10.1111/j.1095-8649.1992.tb02648.x
  22. Martin TJ 1990. Osmoregulatory in three species of Ambassidae (Osteichthyes: Perciformes) from estuaries in Natal. S. Afr. J. Zool. 25:229-234 https://doi.org/10.1080/02541858.1990.11448217
  23. McKenzie DJ, E Cataldi, EW Taylor, S Cataudella and P Bronzi. 2001b. Effects of acclimation to brackish water on tolerance of salinity challenge by Adriatic sturgeon (Acipenser naccarii). Can. J. Fish. Aquat. Sci. 58:1113-1120 https://doi.org/10.1139/cjfas-58-6-1113
  24. McKenzie DJ, E Cataldi, S Owen, EW Taylor and P Bronzi. 2001a. Effects of acclimation to brackish water on the growth, respiratory metabolism and exercise performance of Adriatic sturgeon (Acipenser naccarii). Can. J. Fish. Aquat. Sci. 58:1104-1112 https://doi.org/10.1139/cjfas-58-6-1104
  25. Morgan JD and GK Iwama. 1991. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 48:2083-2094 https://doi.org/10.1139/f91-247
  26. Morgan JD and GK Iwama. 1998. Salinity effects on oxygen consumption, gill Na$^+$, K$^+$-ATPase activity and ion regulation in juvenile coho salmon. J. Fish Biol. 53:1110-1119
  27. Parker FR 1973. Reduced metabolic rates in fishes as a result of induced schooling. Trans. Am. Fish. Soc. 102:125-130 https://doi.org/10.1577/1548-8659(1973)102<125:RMRIFA>2.0.CO;2
  28. Perry SF and G McDonald. 1993. Gas exchanges. pp.329-425 In The Physiology of Fishes (Evans DH ed.). Boca Raton. FL: CRC Press
  29. Randall DJ 1982. The control of respiration and circulation in fish during exercise and hypoxia. J. Exp. Biol. 100:275-285
  30. Ross RM, TWH Backman and KE Limburg. 1992. Group-sizemediated metabolic rate reduction in American shad. Trans. Am. Fish. Soc. 121:385-390 https://doi.org/10.1577/1548-8659(1992)121<0385:NGMRRI>2.3.CO;2
  31. Ruer PM, JJ Cech and SI Doroshov. 1987. Routine metabolism of the white sturgeon, Acipenser transmontanus: effect of population density and hypoxia. Aquaculture 62:45-52
  32. Sardella BA, V Matey, J Cooper, RJ Gonzalez and CJ Brauner. 2004. Physiological, biochemical and morphological indicators of osmoregulatory stress in ‘California’ Mozambique tilapia (Oreochromis mossambicus×O. urolepis hornorum) exposed to hypersaline water. J. Exp. Biol. 207:1399-1413 https://doi.org/10.1242/jeb.00895
  33. Smart G. 1978. Investigation of the toxic mechanisms of ammonia to fish-gas exchange in rainbow trout (Salmo gairdneri) exposed to acutely lethal concentrations. J. Fish Biol. 12:93-104 https://doi.org/10.1111/j.1095-8649.1978.tb04155.x
  34. Steffensen JF, PL Lomholt and K Johansen. 1981. The relative importance of skin oxygen uptake in the naturally buried plaice, Pleuronectes platessa, exposed to graded hypoxia. Respir. Physiol. 44:268-275
  35. Swanson C. 1998. Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). J. Exp. Biol. 201:3355-3366
  36. Umezawa SI, S Adachi and K Taneda. 1983. Group effect on oxygen consumption of the ayu (Plecoglossus altivelis) in relation to growth stage. Jap. J. Ichthyol. 30:261-267
  37. van Rooij JM and JJ Videler. 1996. Estimating oxygen uptake rate from ventilation frequency in the reef fish Sparisoma viride. Mar. Eco. Prog. Ser. 132:31-41 https://doi.org/10.3354/meps132031