Improvement of Degrading Activity of Poly(butylene succinateco-butylene adipate)-Degrading Strains Isolated from Soils

토양에서 분리한 Poly(butylene succinate-co-butylene adipate) 분해균의 분해활성 증진

  • Received : 2008.12.12
  • Accepted : 2009.04.28
  • Published : 2009.05.31

Abstract

From leaf mold and reclamation site soil of the Capital area of Korea, 3 poly(butylene succinate-co-butylene adipate: PBSA)-degrading strains were isolated through the clear zone test. The PBSA-degrading activities of the strains were assessed by means of a modified Sturm test using 0.01% of PBSA film as a sole carbon source. After the modified Sturm tests for 40 days at the respective isolation temperatures, the 3 strains degraded 30%, 55% and 43% of PBSA, respectively. The isolated strains were identified to be Burkholderia cepacia PBSA-4, Bacillus licheniformisPBSA-5 and Burkholderia sp. PBSA-6 through the 16S rDNA gene sequence analysis. Among them, PBSA-5 degraded both PBSA and Poly(vinyl alcohol). The degradation activity of the PBSA degrading strains appeared to be high at moderate temperatures such as $27^{\circ}C$ and $37^{\circ}C$, and initial inoculum size of $10^{10}cfu\;mL^{-1}$ degraded PBSA 1.2~1.3 more times than that $10^9cfu\;mL^{-1}$. Addition of 0.1 or 0.5% (w/w) of gelatin, yeast extract and ammonium sulfate raised the PBSA degrading activity, and especially addition of 0.1% (w/w) of gelatin enhanced the PBSA degrading activity by more than 33%. The mixed strains degraded PBSA faster than the single strain.

우리나라 서울시와 경기도 일대의 토양으로부터 poly(butylene succinate-co-butylene adipate: PBSA)를 분해하는 중온성세균 3주를 분리하였다. 0.01%의 PBSA film이 유일 탄소원으로 첨가된 변형 Sturm test에서 40일간 PBSA의 생분해도는 각 분리균주가 30%, 55% 및 43%를 나타내었으며, 이 중 Bacillus licheniformis PBSA-5의 경우는 PBSA뿐만 아니라 PVA에도 분해 활성을 나타내어 산업적으로 매우 유용하게 사용될 것으로 사료된다. 분리균주에 대한 16S rDNA 염기서열분석 결과로부터 각각 Burkholderia cepacia PBSA-4, Bacillus licheniformis PBSA-5 및 Burkholderia sp. PBSA-6로 동정되었다. 분리균주들의 PBSA 분해 활성은 $27^{\circ}C$에서 가장 높게 나타났으며, $47^{\circ}C$ 이상의 고온에서는 분해 활성이 감소하였다. 초기 균 접종량이 $10^{10}cfu\;mL^{-1}$일 때 $10^9cfu\;mL^{-1}$보다 PBSA의 분해 활성이 약 1.2~1.3배 증가하였다. 0.1 및 0.5%의 gelatin, yeast extract 및 ammonium sulfate를 첨가한 경우에 PBSA의 분해 활성이 증가하였는데, 특히 0.1% gelatin의 첨가는 PBSA의 분해 활성을 33% 증진시켰다. 또한 각 분리균주를 단독 배양할 때보다 두 균주를 혼합 배양한 경우는 PBSA의 분해 활성이 약 1.2배~2.1배까지 증진되어 PBSA의 생분해도는 54~68%에 도달하였다.

Keywords

References

  1. 김말남, 이선희. 2007. Screening of microorganisms with high poly(butylene succinate-co-butylene adipate)-degrading activity. 환경생물. 25(3):267-272
  2. 김말남, 박상태. 2007. Isolation of a poly(L-lactide) degrading bacterium and improvement of its degradation capacity. 환경생물. 25(3):260-266
  3. ASTM D5209-92. 1992. Standard test method for determining the aerobic biodegradation of plastic materials in the presence of municipal sewage sludge annual book of ASTM standards, Vol. 08-03, American Society for Testing and Materials, Philadelphia, U.S.A, 08-03
  4. Calil MR, F Gaboardi, CGF Guedes and DS Rosa. 2006. Comparision of the biodegradation of poly($\varepsilon$-caprolactone), cellulose acetate and their blends by the Strum test and selected cultured fungi. Polymer Testing 25:597-604
  5. Chen J, MH Wong, YS Wong and NFTam. 2008. Multifactors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Mar. Pollut. Bull. 57:695-702 https://doi.org/10.1016/j.marpolbul.2008.03.013
  6. Hayase N, H Yano, E Kudoh, C Tsutsumi, K Ushio, Y MiYahara, S Tanaka and K Nakagawa. 2004. Isolation and characterization of poly(butylene succinate-co-butylene adipate)-degrading microorganism. J. Biosci. Bioeng. 97:131-133 https://doi.org/10.1016/S1389-1723(04)70180-2
  7. Ishii NYI, T Tagaya, H Mitomo, D Nagai and K Kasuya. 2008. Isolation and characterization of poly(butylene succinate)-degrading fungi. Polym. Degrad. Stabil. In press https://doi.org/10.1016/j.polymdegradstab.2008.02.005
  8. Jean JS, MK Lee, SM Wang, P Chattopadhyay and JP Maity. 2008. Effects of inorganic nutrient levels on the biodegradation of benzene, toluene, and xylene (BTX) by Pseudomonas spp. In a laboratory porous media sand aquifer model. Bioresource Technol. 99:7807-7815 https://doi.org/10.1016/j.biortech.2008.01.064
  9. Kumar SKT and M Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetic analysis and sequence alignment. Breifings in Bioinformatics. 5:150-163 https://doi.org/10.1093/bib/5.2.150
  10. Marija SN and J Djonlagic. 2001. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym. Degrad. Stabil. 74:263-270 https://doi.org/10.1016/S0141-3910(01)00156-2
  11. Salmeron-Alcocer A, N Ruiz-Ordaz, C Juarez-Ramirez and J Galindez-Mayer. 2007. Continuous biodegradation of single and mixed chlorophenols by a mixed microbial culture constituted by Burkholderia sp., Microbacterium phyllosphaerae, and Candida tropicalis. Biochem. Eng. J. 37:201-211 https://doi.org/10.1016/j.bej.2007.04.015
  12. Teeraphatpornchai T, T Nakajima-Kambe, Y Shigeno-Akutsu, M Nakayama, N Nomura, T Nakahara and H Uchiyama. 2003. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics. Biotechnol. Lett. 25:23-28 https://doi.org/10.1023/A:1021713711160
  13. Tomita K, Y Kuroki, N Hatashi and Y Komukai. 2000. Isolation of a thermophile degrading poly(butylene succinate-cobutylene adipate). J. Biosci. Bioeng. 90:350-352 https://doi.org/10.1016/S1389-1723(00)80096-1
  14. Uchida HTNK, Y Shigeno-Akutsu, N Nomura, Y Tokiwa and T Nakahara. 2000. Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic. FEMS Microbiol. Lett. 189:25-29 https://doi.org/10.1111/j.1574-6968.2000.tb09201.x
  15. Zhang RL, GQ Hunag, JY Lian and XG Li. 2007. Degradation of MTBE and TBA by a new isolate from MTBE-contaminated soil. J. Environ. Sci. 19:1120-1124 https://doi.org/10.1016/S1001-0742(07)60182-X
  16. Zhao JH, XQ Wang, J Zeng, G Yang, FH Shi and Q Yan. 2005. Biodegradation of poly(butylene succinate-co-buty-lene adipate) by Aspergillus versicolor. Polym. Degrad. Stabil. 90:173-179 https://doi.org/10.1016/j.polymdegradstab.2005.03.006