DOI QR코드

DOI QR Code

Environmental Pollutants and Epigenetics

환경오염 물질과 에피제네틱스

  • Park, Sung-Kyun (Department of Environmental Health Sciences, School of Public Health, University of Michigan) ;
  • Lee, Sun-Dong (School of Oriental Medicine, Sangji University)
  • 박성균 (미시간대학교 보건대학원 환경보건학과) ;
  • 이선동 (상지대학교 한의과대학)
  • Received : 2009.09.03
  • Accepted : 2009.10.15
  • Published : 2009.10.31

Abstract

Since Barker found associations between low birth weight and several chronic diseases later in life, the hypothesis of fetal origins of adult disease (aka, Barker Hypothesis) and epigenetics have been emerging as a new paradigm for geneenvironment interaction of chronic disease. Epigenetics is the study of heritable changes in gene silencing that occur without any change in DNA sequence. Gene expression can be regulated by several epigenetic mechanisms, including DNA methylation and histone modifications, which may be associated with chronic conditions, such as cancers, cardiovascular disease, and type-2 diabetes. One carbon metabolism which involves the transfer of a methyl group catalyzed by DNA methyltransferase is an important mechanism by which DNA methylation occurs in promoter regions and/or repetitive elements of the genome. Environmental factors may induce epigenetic modification through production of reactive oxygen species, alteration of methyltransferase activity, and/or interference with methyl donors. In this review, we introduce recent studies of epigenetic modification and environmental factors, such as heavy metals, environmental hormones, air pollution, diet and psychosocial stress. We also discuss epigenetic perspectives of early life environmental exposure and late life disease occurrence.

Keywords

References

  1. Barker, D. J., Eriksson, J. G., Forsen, T. and Osmond, C. : Fetal origins of adult disease: s trength of effects and biological basis. International Journal of Epidemiology, 31(6), 1235-1239, 2002 https://doi.org/10.1093/ije/31.6.1235
  2. Barker, D. J. : In utero programming of chronic disease. Clinical Science (Lond), 95(2), 115-128, 1998 https://doi.org/10.1042/CS19980019
  3. Tang, W. Y. and Ho, S. M. : Epigenetic reprogramming and imprinting in origins of disease. Reviews in Endocrine & Metabolic Disorders, 8(2), 173-182, 2007 https://doi.org/10.1007/s11154-007-9042-4
  4. Barker, D. J. : Fetal origins of coronary heart disease. British Medical Journal, 311(6998), 171-174, 1995 https://doi.org/10.1136/bmj.311.6998.171
  5. Barker, D. J., Osmond, C., Golding, J., Kuh, D.,Wadsworth, M. E. : Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. British Medical Journal, 298(6673), 564-567, 1989 https://doi.org/10.1136/bmj.298.6673.564
  6. Hales, C. N., Barker, D. J., Clark, P. M., Cox, L. J.,Fall, C. and Osmond, C., et al. : Fetal and infant growth and impaired glucose tolerance at age 64. British Medical Journal, 303(6809), 1019-1022, 1991 https://doi.org/10.1136/bmj.303.6809.1019
  7. Bolin, C. M., Basha, R, Cox, D., Zawia, N. H., Maloney,B., Lahiri, D. K., et al. : Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB Journal, 20(6), 788-790, 2006 https://doi.org/10.1096/fj.05-5091fje
  8. Dolinoy, D. C., Huang, D. and Jirtle, R. L. : Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13056-13061, 2007 https://doi.org/10.1073/pnas.0703739104
  9. Krause, E. T., Honarmand, M., Wetzel, J. and Naguib, M. : Early fasting is long lasting: differences in early nutritional conditions reappear under stressful conditions in adult female zebra finches. Public Library of Science ONE, 4(3), e5015-0000, 2009
  10. Wu, J., Basha, M. R., Brock, B., Cox, D. P., Cardozo-Pelaez, F. and McPherson, C. A, et al. : Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmentallink for AD. Journal of Neuroscience, 28(1), 3-9, 2008 https://doi.org/10.1523/JNEUROSCI.4405-07.2008
  11. Gluckman, P. D., Hanson, M. A., Cooper, C., Thornburg, K. L. : Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359(1), 61-73, 2008 https://doi.org/10.1056/NEJMra0708473
  12. Waggoner, D. : Mechanisms of disease: epigenesis. Seminars in Pediatric Neurology, 14(1), 7-14, 2007 https://doi.org/10.1016/j.spen.2006.11.004
  13. Waterland, R. A. and Michels, K. B. : Epigenetic epidemiology of the developmental origins hypothesis. Annual Review of Nutrition, 27, 363-388, 2007 https://doi.org/10.1146/annurev.nutr.27.061406.093705
  14. Esteller, M. : Epigenetics in cancer. New England Journal of Medicine, 358(11), 1148-1159, 2008 https://doi.org/10.1056/NEJMra072067
  15. Lopez, J., Percharde, M., Coley, H. M., Webb, A. and Crook, T. : The context and potential of epigenetics in oncology. British Journal of Cancer, 100(4), 571- 577, 2009 https://doi.org/10.1038/sj.bjc.6604930
  16. Yoo, C. B. and Jones, P. A. : Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery, 5(1), 37-50, 2006 https://doi.org/10.1038/nrd1930
  17. Simmons, R. A. : Developmental origins of beta-cell failure in type 2 diabetes: the role of epigenetic mechanisms. Pediatric Research, 61(5 Pt 2), 64R-67R, 2007 https://doi.org/10.1203/pdr.0b013e3180457623
  18. Campion, J., Milagro, F. I. and Martinez. J. A. :Individuality and epigenetics in obesity. Obes Rev, 10(4), 383-392, 2009 https://doi.org/10.1111/j.1467-789X.2009.00595.x
  19. Zawia, N. H., Lahiri, D. K., Cardozo-Pelaez, F. : Epigenetics, oxidative stress, and Alzheimer disease. Free Radical Biology & Medicine, 46(9), 1241-1249, 2009 https://doi.org/10.1016/j.freeradbiomed.2009.02.006
  20. Schanen, N. C. : Epigenetics of autism spectrum disorders. Human Molecular Genetics, 15 Spec No 2, R138-50, 2006 https://doi.org/10.1093/hmg/ddl213
  21. Steinke, J. W., Rich, S. S. and Borish, L. : 5. Genetics of allergic disease. Journal of Allergy and Clinical Immunology, 121(2 Suppl), S384-7; quiz S416, 2008 https://doi.org/10.1016/j.jaci.2007.07.029
  22. Foley, D. L., Craig, J. M., Morley, R., Olsson, C. A.,Dwyer, T. and Smith, K., et al. : Prospects for epigenetic epigenetic epidemiology. American Journal of Epidemiology, 169(4), 389-400, 2009 https://doi.org/10.1093/aje/kwn380
  23. Holliday, R. : Epigenetics: a historical overview. Epigenetics, 1(2), 76-80, 2006 https://doi.org/10.4161/epi.1.2.2762
  24. Allis, C. D., Jenuwein, T., Reinberg, D. Overview and Concepts. In: Allis, C. D., Jenuwein, T., Reinberg, D., Caparros, M.-L, eds. Epigenetics. New York: Cold Spring Harbor Laboratory Press, 2007
  25. Robertson, K. D., Wolffe, A. P. : DNA methylation in health and disease. Nature Reviews Genetics, 1(1), 11-19, 2000 https://doi.org/10.1038/35049533
  26. Slotkin, R. K., Martienssen R. : Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics, 8(4), 272-285, 2007 https://doi.org/10.1038/nrg2072
  27. Zeisel, S. H. : Importance of methyl donors during reproduction. American Journal of Clinical Nutrition, 89(2), 673S-677S, 2009 https://doi.org/10.3945/ajcn.2008.26811D
  28. Vickers, M. H., Gluckman, P. D., Coveny, A. H.,Hofman, P. L., Cutfield, W. S., Gertler, A., et al. :Neonatal leptin treatment reverses developmental programming. Endocrinology, 146(10), 4211-4216, 2005 https://doi.org/10.1210/en.2005-0581
  29. Waterland, R. A, Jirtle, R. L. : Transposable elements:targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology, 23(15), 5293-5300, 2003 https://doi.org/10.1128/MCB.23.15.5293-5300.2003
  30. Santos, F., Hendrich, B., Reik, W., Dean, W. : Dynamic reprogramming of DNA methylation in the early mouse embryo. Developmental Biology, 241(1), 172-182, 2002 https://doi.org/10.1006/dbio.2001.0501
  31. Kaneko-Ishino, T., Kohda, T., Ono, R. and Ishino, F. : hypothesis: the necessity of a monoallelic gene expression mechanism in mammalian development. Cytogenetic and Genome Research, 113(1-4), 24-30, 2006 https://doi.org/10.1159/000090811
  32. Bird, A. : Perceptions of epigenetics. Nature, 447(7143), 396-398, 2007 https://doi.org/10.1038/nature05913
  33. Kaati, G., Bygren, L. O. and Edvinsson, S. : Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. European Journal of Human Genetics, 10(11), 682-688, 2002 https://doi.org/10.1038/sj.ejhg.5200859
  34. Cheng, R. Y., Hockman, T., Crawford, E., Anderson, L. M. and Shiao, Y. H. : Epigenetic and gene expression changes related to transgenerational carcinogenesis. Molecular Carcinogenesis, 40(1), 1-11, 2004 https://doi.org/10.1002/mc.20022
  35. Anway, M. D., Leathers, C. and Skinner, M. K. :Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology, 147(12), 5515-5523, 2006 https://doi.org/10.1210/en.2006-0640
  36. Ercal, N., Gurer-Orhan, H., Aykin-Burns, N. : Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6), 529-539, 2001 https://doi.org/10.2174/1568026013394831
  37. Bindhumol, V., Chitra, K. C. and Mathur, P. P. : Bisphenol A induces reactive oxygen species gener ation in the liver of male rats. Toxicology, 188(2-3), 117-124, 2003 https://doi.org/10.1016/S0300-483X(03)00056-8
  38. Brook, R. D., Franklin, B., Cascio, W., Hong, Y.,Howard, G., Lipsett, M., et al. : Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 109(21), 2655-2671, 2004 https://doi.org/10.1161/01.CIR.0000128587.30041.C8
  39. Franco, R., Schoneveld, O., Georgakilas, A. G. and Panayiotidis, M. I. Oxidative stress, DNA methylation and carcinogenesis. Cancer Letters, 266(1), 6-11, 2008 https://doi.org/10.1016/j.canlet.2008.02.026
  40. Xu, Y., Wang, Y., Zheng, Q., Li, X., Li, B., Jin, Y.,et al. : Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults. Toxicology and Applied Pharmacology, 232(1), 142-149, 2008 https://doi.org/10.1016/j.taap.2008.06.010
  41. Prins, G. S., Tang, W. Y., Belmonte, J., Ho and S.M. Perinatal exposure to oestradiol and bisphenol A alters the prostate epigenome and increases susceptibility to carcinogenesis. Basic Clin Pharmacol Toxicol, 102(2), 134-138, 2008 https://doi.org/10.1111/j.1742-7843.2007.00166.x
  42. Valinluck, V., Tsai, H. H., Rogstad, D. K., Burdzy, A., Bird, A., Sowers, L. C. : Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Research, 32(14), 4100-4108, 2004 https://doi.org/10.1093/nar/gkh739
  43. Poirier, L. A., Vlasova, T. I. : The prospective role of abnormal methyl metabolism in cadmium toxicity. Environmental Health Perspectives, 110 Suppl 5, 793-795, 2002 https://doi.org/10.1289/ehp.02110s5793
  44. Reichard, J. F., Schnekenburger, M. and Puga, A. : Long term low-dose arsenic exposure induces loss of DNA methylation. Biochemical and Biophysical Research Communications, 352(1), 188-192, 2007 https://doi.org/10.1016/j.bbrc.2006.11.001
  45. Takiguchi, M., Achanzar, W. E, Qu, W., Li, G. and Waalkes, M. P. : Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Experimental Cell Research, 286(2), 355-365, 2003 https://doi.org/10.1016/S0014-4827(03)00062-4
  46. Chanda, S., Dasgupta, U. B., Guhamazumder, D.,Gupta, M., Chaudhuri, U. and Lahiri, S., et al. :DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicological Science, 89(2), 431-437, 2006 https://doi.org/10.1093/toxsci/kfj030
  47. Goering, P. L., Aposhian, H. V., Mass, M. J., Cebrian, M., Beck, B. D.,Waalkes, M. P. : The enigma of arsenic carcinogenesis: role of metabolism. Toxicological Science, 49(1), 5-14, 1999 https://doi.org/10.1093/toxsci/49.1.5
  48. Sutherland, J. E., Costa, M. : Epigenetics and the environment. Annals of the New York Academy of Sciences, 983, 151-160, 2003 https://doi.org/10.1111/j.1749-6632.2003.tb05970.x
  49. ATSDR. Toxicological profile for cadmium. Atlanta, GA: U.S. Department of Health & Human Services, 1999
  50. Waalkes, M. P. : Cadmium carcinogenesis in review. Journal of Inorganic Biochemistry, 79(1-4), 241-244, 2000 https://doi.org/10.1016/S0162-0134(00)00009-X
  51. Huang, D., Zhang, Y., Qi, Y., Chen, C. and Ji, W. :Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium- stimulated K562 cell proliferation. Toxicology Letters, 179(1), 43-47, 2008 https://doi.org/10.1016/j.toxlet.2008.03.018
  52. Jiang, G., Xu, L., Song, S., Zhu, C., Wu, Q. and Zhang. L., et al. : Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology, 244(1), 49-55, 2008 https://doi.org/10.1016/j.tox.2007.10.028
  53. Benbrahim-Tallaa, L., Waterland, R. A., Dill, A. L.,Webber, M. M. and Waalkes, M. P. : Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environmental Health Perspectives, 115(10), 1454-1459, 2007
  54. Benbrahim-Tallaa, L., Waterland, R. A., Styblo, M.,Achanzar, W. E., Webber, M. M. and Waalkes, M.P. : Molecular events associated with arsenicinduced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicology and Applied Pharmacology, 206(3), 288-298, 2005 https://doi.org/10.1016/j.taap.2004.11.017
  55. Chen, H., Liu, J., Zhao, C. Q,, Diwan, B. A., Merrick,B. A. and Waalkes, M. P. : Association of cmyc overexpression and hyperproliferation with arsenite- induced malignant transformation. Toxicology and Applied Pharmacology, 175(3), 260-268, 2001 https://doi.org/10.1006/taap.2001.9253
  56. Sciandrello, G., Caradonna, F., Mauro, M. and Barbata, G. : Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis, 25(3), 413-417, 2004 https://doi.org/10.1093/carcin/bgh029
  57. Chai, C. Y., Huang, Y. C., Hung, W. C., Kang, W.Y. and Chen, W. T. : Arsenic salts induced autophagic cell death and hypermethylation of DAPK promoter in SV-40 immortalized human uroepithelial cells. Toxicology Letters, 173(1), 48-56, 2007 https://doi.org/10.1016/j.toxlet.2007.06.006
  58. Chen, W. T., Hung, W. C., Kang, W. Y., Huang, Y.C. and Chai, C. Y. : Urothelial carcinomas arising in arsenic-contaminated areas are associated with hypermethylation of the gene promoter of the deathassociated protein kinase. Histopathology, 51(6), 785-792, 2007 https://doi.org/10.1111/j.1365-2559.2007.02871.x
  59. Cui, X., Wakai, T., Shirai, Y., Hatakeyama, K. and Hirano, S. : Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice. Toxicological Science, 91(2), 372-381, 2006 https://doi.org/10.1093/toxsci/kfj159
  60. Zhang, A. H., Bin, H. H., Pan, X. L., Xi and X. G.. :Analysis of p16 gene mutation, deletion and methylation in patients with arseniasis produced by indoor unventilated-stove coal usage in Guizhou, China. Journal of Toxicology and Environmental Health, 70(11), 970-975, 2007 https://doi.org/10.1080/15287390701290808
  61. Ramirez, T., Brocher, J., Stopper, H. and Hock, R. :Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma, 117(2), 147-157, 2008 https://doi.org/10.1007/s00412-007-0133-5
  62. Pilsner, J. R., Liu, X., Ahsan, H., Ilievski, V., Slavkovich, V. and Levy, D., et al. : Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. American Journal of Clinical Nutrition, 86(4), 1179-1186, 2007 https://doi.org/10.1093/ajcn/86.4.1179
  63. Pilsner, J. R., Liu, X., Ahsan, H., Ilievski, V., Slavkovich, V. and Levy, D., et al. : Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environmental Health Perspectives, 117(2), 254-260, 2009 https://doi.org/10.1289/ehp.11872
  64. Kanduc, D., Rossiello, M. R., Aresta, A., Cavazza, C., Quagliariello, E. and Farber, E. : Transitory DNA hypomethylation during liver cell proliferation induced by a single dose of lead nitrate. Archives of Biochemistry and Biophysics, 286(1), 212-216, 1991 https://doi.org/10.1016/0003-9861(91)90030-M
  65. Rossiello, M. R., Aresta, A. M., Prisco, M. and Kanduc, D. : DNA hypomethylation during liver cell proliferation induced by a single dose of lead nitrate. Bollettino Societa Italiana Biologia Sperimentale, 67(12), 993-997, 1991
  66. Basha, M. R., Wei, W., Bakheet, S. A., Benitez, N.,Siddiqi, H. K. and Ge, Y. W., et al. : The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. Journal of Neuroscience, 25(4), 823-829, 2005 https://doi.org/10.1523/JNEUROSCI.4335-04.2005
  67. Pilsner, J. R., Hu, H., Ettinger, A., S\acute{a}nchez, B. N.,Wright, R. O., Cantonwine, D., et al. : Inf luence o f Prenatal Lead Exposure on Genomic Methylation of Cord Blood DNA. Environmental Health Perspectives, (in press), 2009 https://doi.org/10.1289/ehp.0800497.
  68. Ji, W., Yang, L., Yu, L., Yuan, J., Hu, D. and Zhang, W., et al. : Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis, 29(6), 1267-1275, 2008 https://doi.org/10.1093/carcin/bgn012
  69. Ke, Q., Davidson, T., Chen, H., Kluz, T. and Costa, M. : Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis, 27(7), 1481-1488, 2006 https://doi.org/10.1093/carcin/bgl004
  70. Lee, Y. W., Klein, C. B., Kargacin, B., Salnikow, K., Kitahara, J. and Dowjat. K., et al. : Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Molecular and Cellular Biology, 15(5), 2547-2557, 1995 https://doi.org/10.1128/MCB.15.5.2547
  71. Kondo, K., Takahashi, Y., Hirose, Y., Nagao, T.,Tsuyuguchi, M. and Hashimoto, M., et al. : The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer. Lung Cancer, 53(3), 295-302, 2006 https://doi.org/10.1016/j.lungcan.2006.05.022
  72. Schnekenburger, M., Talaska, G. and Puga, A. : Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Molecular and Cellular Biology, 27(20), 7089-7101, 2007 https://doi.org/10.1128/MCB.00838-07
  73. NTP, CERHR. NTP-CERHR Monograph on the potential human reproductive and developmental effects of bisphenol A. National Institutes of Health 2008
  74. Maffini, M. V., Rubin, B. S., Sonnenschein, C. and Soto, A. M. : Endocrine disruptors and reproductive health: the case of bisphenol-A. Molecular and Cellular Endocrinology, 254-255, 179-186, 2006 https://doi.org/10.1016/j.mce.2006.04.033
  75. Welshons, W. V., Nagel, S. C. and vom Saal, F. S. :Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology, 147(6 Suppl), S56-69, 2006 https://doi.org/10.1210/en.2005-1159
  76. Ho, S. M., Tang, W. Y., Belmonte, de Frausto, J. and Prins, G. S. : Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Research, 66(11), 5624-5632, 2006 https://doi.org/10.1158/0008-5472.CAN-06-0516
  77. Rubin, M. M. : Antenatal exposure to DES: lessons learned...future concerns. Obstetrical & Gynecological Survey, 62(8), 548-555, 2007 https://doi.org/10.1097/01.ogx.0000271138.31234.d7
  78. 84Li, S., Hansman, R., Newbold, R., Davis, B., McLachlan, J. A. and Barrett, J. C. : Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Molecular Carcinogenesis, 38(2), 78-84, 2003 https://doi.org/10.1002/mc.10147
  79. Li, S., Washburn, K. A., Moore, R., Uno, T., Teng, C. and Newbold, R. R., et al. : Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Research, 57(19), 4356-4359, 1997
  80. Sato, K., Fukata, H., Kogo, Y., Ohgane, J., Shiota, K. and Mori, C. : Neonatal exposure to diethylstilbestrol alters the expression of DNA methyltransferases and methylation of genomic DNA in the epididymis of mice. Endocrine Journal, 53(3), 331-337, 2006 https://doi.org/10.1507/endocrj.K06-009
  81. Tang, W. Y., Newbold, R., Mardilovich, K., Jefferson, W., Cheng, R. Y. and Medvedovic, M., et al. :Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology, 149(12), 5922-5931, 2008 https://doi.org/10.1210/en.2008-0682
  82. Newbold, R. R., Padilla-Banks, E. and Jefferson, W.N. : Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology, 147(6 Suppl), S11-7, 2006 https://doi.org/10.1210/en.2005-1164
  83. Anway, M. D., Cupp, A. S., Uzumcu, M. and Skinner, M. K. : Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308(5727), 1466-1469, 2005 https://doi.org/10.1126/science.1108190
  84. Crews, D., Gore, A. C., Hsu, T. S., Dangleben, N.L., Spinetta, M. and Schallert, T., et al. : Transgenerational epigenetic imprints on mate preference. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5942-5946, 2007 https://doi.org/10.1073/pnas.0610410104
  85. Rusiecki, J. A., Baccarelli, A., Bollati, V., Tarantini, L., Moore, L. E. and Bonefeld-Jorgensen, E. C. :Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. Environmental Health Perspectives, 116(11), 1547-1552, 2008 https://doi.org/10.1289/ehp.11338
  86. Bunger, M. K., Glover, E., Moran, S. M., Walisser, J. A., Lahvis, G. P. and Hsu, E. L., et al. : Abnormal liver development and resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in mice carrying a mutation in the DNA-binding domain of the aryl hydrocarbon receptor. Toxicological Science, 106(1), 83-92, 2008 https://doi.org/10.1093/toxsci/kfn149
  87. Okey, A. B. : An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology-XI. Toxicological Science, 98(1), 5-38, 2007 https://doi.org/10.1093/toxsci/kfm096
  88. Wu, Q., Ohsako, S., Ishimura, R., Suzuki, and J. S.,Tohyama, C. : Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status o f imprinted genes H19 and Igf2. Biology of Reproduction, 70(6), 1790-1797, 2004 https://doi.org/10.1095/biolreprod.103.025387
  89. Schwartz, J. : Air pollution and children's health. Pediatrics, 113(4 Suppl), 1037-1043, 2004
  90. Baccarelli, A., Wright, R. O., Bollati, V., Tarantini, L., Litonjua, A. A. and Suh, H. H., et al. : Rapid DNA methylation changes after exposure to traffic particles. American Journal of Respiratory and Critical Care Medicine, 179(7), 572-578, 2009 https://doi.org/10.1164/rccm.200807-1097OC
  91. Perera, F., Tang, W. Y., Herbstman, J., Tang, D.,Levin, L. and Miller, R., et al. : R elation of DNA methylation of 5'-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. Public Library of Science ONE, 4(2), e4488, 2009 https://doi.org/10.1371/annotation/6a678269-9623-4a13-8b19-4e9431ff3cb6
  92. Tarantini, L., Bonzini, M., Apostoli, P., Pegoraro, V., Bollati, V. and Marinelli. B, et al. : E f f ects o f particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environmental Environmental Health Perspectives, 117(2), 217-222, 2009 https://doi.org/10.1289/ehp.11898.
  93. Belinsky, S. A., Snow, S. S., Nikula, K. J., Finch, G.L., Tellez, C. S. and Palmisano, W. A. : Aberrant CpG island methylation of the p16(INK4a) and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis, 23(2), 335-339, 2002 https://doi.org/10.1093/carcin/23.2.335
  94. Park, S. K., O'Neill, M. S., Vokonas, P. S., Sparrow, D., Spiro, A., 3rd and Tucker, K. L., et al. :Traffic-related particles are associated with elevated homocysteine: the VA normative aging study. American Journal of Respiratory and Critical Care Medicine, 178(3), 283-289, 2008 https://doi.org/10.1164/rccm.200708-1286OC
  95. Cobiac, L. : Epigenomics and nutrition. Forum of Nutrition, 60, 31-41, 2007 https://doi.org/10.1159/000107065
  96. Gallou-Kabani, C., Vige, A., Gross, M. S. and Junien, C. : Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond. Clinical Chemistry and Laboratory Medicine, 45(3), 321-327, 2007 https://doi.org/10.1515/CCLM.2007.081
  97. Baccarelli, A., Cassano, P. A., Litonjua, A., Park, S.K., Suh, H. and Sparrow, D., et al. : Cardiac autonomic dysfunction: effects from particulate air pollution and protection by dietary methyl nutrients and metabolic polymorphisms. Circulation, 117(14), 1802-1809, 2008 https://doi.org/10.1161/CIRCULATIONAHA.107.726067
  98. Fish, E. W., Shahrokh, D., Bagot, R., Caldji, C.,Bredy, T. and Szyf, M., et al. : Epigenetic programming of stress responses through variations in maternal care. Annals of the New York Academy of Sciences, 1036, 167-180, 2004 https://doi.org/10.1196/annals.1330.011
  99. Szyf, M., Weaver, I., Meaney, M. : Maternal care, the epigenome and phenotypic differences in behavior. Reproductive Toxicology, 24(1), 9-19, 2007 https://doi.org/10.1016/j.reprotox.2007.05.001
  100. Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S. and Seckl, J. R., et al. :Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847-854, 2004 https://doi.org/10.1038/nn1276
  101. Weaver, I. C., Champagne, F. A., Brown, S. E., Dymov, S., Sharma, S. and Meaney, M. J., et al.:Reversal o f maternal programming o f stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. Journal of Neuroscience, 25(47), 11045-11054, 2005 https://doi.org/10.1523/JNEUROSCI.3652-05.2005
  102. WHO/FAO. Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser, 916, i-viii, 1-149, backcover, 2003

Cited by

  1. The Role of Gene-environment Interaction in Environmental Carcinogenesis vol.36, pp.1, 2010, https://doi.org/10.5668/JEHS.2010.36.1.001