High Remineralization and Denitrification Activity in the Shelf Sediments of Dok Island, East Sea

동해 독도 사면 퇴적물의 높은 재광물화와 탈질소화

  • Jeong, Jin-Hyun (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Dong-Seon (Climate Change & Coastal Disaster Research Department, KORDI) ;
  • Lee, Tae-Hee (Southern Coastal Environmental Research Department, KORDI) ;
  • An, Soon-Mo (Division of Earth Environmental System, Pusan National University)
  • 정진현 (부산대학교 지구환경시스템학부) ;
  • 김동선 (한국해양연구원 기후연안재해연구부) ;
  • 이태희 (한국해양연구원 남해특성연구부) ;
  • 안순모 (부산대학교 지구환경시스템학부)
  • Published : 2009.05.31

Abstract

The rates of sediment oxygen demand(SOD) and denitrification(DNF) were measured using $^{15}N$ isotope pairing technique in intact sediment cores in the shelf of Dok Island. The SOD and DNF in the continental shelf of Dok Island were ranged from 1.04 to $9.08\;mmol\;m^{-2}\;d^{-1}$ and from 7.06 to $37.67\;{\mu}mol\;m^{-2}\;d^{-1}$, respectively. The SOD and DNF values in this study are higher than typical deep sea sediment. The SOD and DNF in this study were high in the high organic matter content sediment and high organic matter content was promotive of coupled nitrification-denitrification. Organic carbon contents in surface sediment ranged from 1.8 to 2.4%, which is higher than typical deep sea sediments. Therefore we conclude that the organic matter content in surface sediment is determined by the nature of the export production not the water depth in East sea sediment and the nature of the export production also determines remineralization processes such as SOD and DNF in East sea/Ulleung Basin sediment.

동해의 독도 사면 지역에서 퇴적물 선상 배양과 $^{15}N$ isotope pairing technique를 이용하여 측정한 퇴적물 산소요구량과 탈질소화율은 각각 $1.04{\sim}9.08\;mmol\;m^{-2}\;d^{-1}$$7.06{\sim}37.67\;{\mu}mol\;m^{-2}\;d^{-1}$로 유사한 수심의 다른 심해 지역에 비해 모두 높게 측정되었다. 퇴적물 산소요구량과 탈질소화율은 퇴적물 내 유기 탄소 함량이 높은 정점에서 높았으며, 표층 퇴적물 내 유기물 함량은 질산화에 의해 생성된 질산염을 이용하는 탈질소화(coupled nitrification-denitrification)와 높은 상관관계를 보였다. 이는 본 조사 지역의 퇴적물 산소요구량뿐만 아니라 탈질소화율 역시 표층 퇴적물 내 유기물에 가장 큰 영향을 받는 것을 시사한다. 독도 사면 지역의 표층 퇴적물 내 유기 탄소 함량은 $1.8{\sim}2.4%$로 다른 심해 지역보다 높게 측정되었으며, 이는 높은 일차생산량에 의해 내보내기 생산이 높기 때문으로 추정된다. 독도 사면 지역에서 표층 퇴적물 내 유기물 농도는 일차생산에 의한 내보내기 생산에 의해 조절되며, 내보내기 생산이 퇴적물에서 일어나는 퇴적물 산소요구량과 탈질소화율 같은 유기물 분해율의 가장 큰 조절 요인인 것으로 추정된다.

Keywords

References

  1. An, S.M. and Joye, S.B., 2001. Enhancement of coupled nitrification- denitrification by benthic photosynthesis in shallow estuarine sediments. Limnol. Oceanogr. 46: 62−74 https://doi.org/10.4319/lo.2001.46.1.0062
  2. Arrigo, K.R., 2004. Marine microorganisms and global nutrient cycles. Nature 437: 349−355 https://doi.org/10.1038/nature04159
  3. Balzer, W., W. Helder, E. Epping, L. Lohse, and S. Otto, 1998. Benthic denitrification and nitrogen cycling at the slope and rise of the N.W. European Continental Margin (Goban Spur). Oceanography, 42: 111–126 https://doi.org/10.1016/S0079-6611(98)00030-5
  4. Banse, K., 1990. New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea. Deep-Sea Research 37: 1177−1195 https://doi.org/10.1016/0198-0149(90)90058-4
  5. Boudreau, B., 1997. Diagenic models and their implementation. Springer
  6. Broerse, A.T.C., 2000. Coccolithophore export production in selected ocean environments: seasonality, biogeography, carbonate production. Ph. D. Thesis, Free University Amsterdam, Amsterdam, 185
  7. Brunnegard, J., Grandelb, S., Stahla, H. Tengberga, A. and Halla, P.O.J., 2004. Nitrogen cycling in deep-sea sediments of the Porcupine Abyssal Plain, NE Atlantic. Oceanography 63: 159−181 https://doi.org/10.1016/j.pocean.2004.09.004
  8. Cai, W.J. and Reimers, C.E., 1995. Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific Ocean. Deep-Sea Research I 42: 1681−1699 https://doi.org/10.1016/0967-0637(95)00073-F
  9. Calow, P. 1975. The feeding strategies of two freshwater gastropods, Ancylusfluviatilis Mull. and Planorbis contortus Linn. (Pulmonata) in terms of ingestion rates and absorption efficiencies. Oecologia 20: 33−49 https://doi.org/10.1007/BF00364320
  10. Capone D.G., Zehr, J.P., Paerl, H.W., Bergman, B. and Carpenter, E.J., 1997. Trichodesmium, a globally significant marine cyano-bacterium. Science 276: 1221–1229 https://doi.org/10.1126/science.276.5316.1221
  11. Chen, C.T.A., Bychkov, A.S., Wang, S.L. and Pavlova, G.Y., 1999. An anoxic Sea of Japan by the year 2200? Marine Chemistry 67: 249−265 https://doi.org/10.1016/S0304-4203(99)00074-2
  12. Cho, H.J., Moon, C.H., Yang, H.S., Kang, W.B. and Lee, K.W., 1997. Regeneration Processes of Nutrients in the Polar Front Area of the East Sea: III. Distribution Patterns of Water Masses and Nutrients in the Middle-Northern East Sea of Korea in October, 1995. J. Korean Fish Soc. 30: 393−407
  13. Chung, C.S., Shim, J.H., Park, Y.C. and Park, S.G., 1989. Primary Productivity and Nitrogenous Nutrients Dynamics in the East Sea of Korea. J. Oceanol. Soc. Korea 24: 52−66
  14. Cociasu, A., Dorogan, L., Humborg, C. and Popa, L., 1996. Long-term ecological changes in the Romanian coastal waters of the Black Sea. Mar. Pollut. Bull. 32: 32−38 https://doi.org/10.1016/0025-326X(95)00106-W
  15. de Jesus Mendes, P.A., Thomsen, L., Holscher, B., de Stigter H.C. and Gust, G., 2007. Pressure effects on the biological degradation of organo-mineral aggregates in submarine canyons. Marine Geology 246: 165−175 https://doi.org/10.1016/j.margeo.2007.05.012
  16. Devol, A.H., 1991. Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature 349: 319−321 https://doi.org/10.1038/349319a0
  17. Emerson, S., Quay, P., Karl, D., Winn, C., Tupas, L. and Landry, M., 1997. Experimental determination of the organic carbon flux from open-ocean surface waters. Nature 389: 951−954 https://doi.org/10.1038/40111
  18. Focht, D.D. and Verstraete, W., 1977. Biochemical ecology of nitrification and denitrification. Adv. Microbiol. Ecol. 1: 135−214
  19. Giles, H., Pilditch, C.A., Nodder, S.D., Zeldis, J.R. and Currie, K., 2003. Benthic oxygen fluxes and sediment properties on the northeastern New Zealand continental shelf. Continental Shelf Research 27: 2373−2388 https://doi.org/10.1016/j.csr.2007.06.007
  20. Grenz, C., Denis, L., Boucher, G., Chauvaud, L., Clavier, J., Fichez, R. and Pringault, O., 2003. Spatial variability in Sediment Oxygen Consumption under winter conditions in a lagoonal system in New Caledonia (South Pacific). J. Experimental Marine Biology and Ecology 285: 33−47 https://doi.org/10.1016/S0022-0981(02)00518-X
  21. Gunnison, D. and Alexander, M., 1975. Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnol. Oceanogr. 20: 64−70 https://doi.org/10.4319/lo.1975.20.1.0064
  22. Harrison, P.D. and Mann, K.H., 1975. Detritus formation from eelgrass (Zostera marina): The relative effects of fragmentation, leaching and decay. Limnol. Oceanogr. 20: 924−934 https://doi.org/10.4319/lo.1975.20.6.0924
  23. Herbert, R.A., 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol. Rev. 23(5): 563−590 https://doi.org/10.1016/S0168-6445(99)00022-4
  24. Hoppe, H.G., Ducklow, H. and Karrasch, B., 1993. Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean. Mar. Ecol. Prog. Ser. 93: 273−283
  25. Horrigan, S.G., 1981. Primary Production under the Ross Ice Shelf, Antarctica. Limnol. Oceanogr. 26: 378−382 https://doi.org/10.4319/lo.1981.26.2.0378
  26. Howes, B.L., John, W., Dacay, H. and King, G.M., 1984. Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments. Limnol. Oceanogr. 29: 1037−1051 https://doi.org/10.4319/lo.1984.29.5.1037
  27. Jahnke, R., 1996. The global ocean flux of particulate organic carbon. Global Biogeochemical Cycles 10: 71−88 https://doi.org/10.1029/95GB03525
  28. Jahnke, R. and Jackson, G., 1991. The spatial distribution of sea floor oxygen consumption in the Atlantic and Pacific oceans. In: Rowe, G., Pariente, V. (Eds.), Deep-sea Food Chains and the Global Carbon Cycle. NATO Advanced Research Workshop. Kluwar, Boston, MA, 295−307
  29. Jahnke, R.A. and Jahnke, D.B., 2000. Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter. Deep-Sea Research I 47(8): 1405−1428 https://doi.org/10.1016/S0967-0637(99)00118-1
  30. Kana, T.M., Darkangelo, C., Hunt, M.D., Oldham, J.B., Bennett, G.E. and Cornwell, J.C., 1994. Membrane inlet mass spectrometer for rapid high precision determination of $N_2$, $O_2$, and Ar in environmental water samples. Anal. Chem. 66: 4166−4170 https://doi.org/10.1021/ac00095a009
  31. Kawahata, H., Nohara, M., Aoki, K., Minoshima K. and Gupta, L. P., 2006. Biogenic and abiogenic sedimentation in the northern East China Sea in response to sea-level change during the Late Pleistocene. Global and Planetary Change 53: 108−121 https://doi.org/10.1016/j.gloplacha.2006.01.013
  32. Kim, D.S., Choi, M.S., Oh, H.Y., Kim, K.H. and Noh, J.H., 2009. Estimate of Particulate Organic Carbon Export Flux Using $^{234}Th/^{238}U$ Disequilibrium in the Southwestern East Sea During Summer. J. Oceanol. Soc. Korea 14: 1−9
  33. Laursen, A.E. and Seitzinger, S.P., 2002. The role of denitrification in nitrogen removal and carbon mineralization in Mid-Atlantic Bight sediments. Continental Shelf Research 22: 1397−1416 https://doi.org/10.1016/S0278-4343(02)00008-0
  34. Lee, T.H., Hyun, J.H., Mok, J.S. and Kim, D.S., 2008. Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin, East/Japan Sea. Geo-Mar. Lett. 28: 153−159 https://doi.org/10.1007/s00367-007-0097-8
  35. Lee, T.S., Kim, I.N., Kang, D.J. and Kim, D.S., 2007. Implication of Deep Nitrite in the Ulleung Basin. J. Oceanol. Soc. Korea 12: 239−243
  36. Middleburg, J.J., Soetaert K. and Herman, P.M., 1996. Evaluation of the nitrogen isotope pairing method for measuring benthic denitrification: A simulation analysis. Limnol. Oceanogr. 41: 1839−1844 https://doi.org/10.4319/lo.1996.41.8.1839
  37. Nakamura, Y., 2003. Sediment oxygen consumption and vertical flux of organic matter in the Seto Inland Sea, Japan. Estuarine, Coastal and Shelf Science 56: 213−220 https://doi.org/10.1016/S0272-7714(02)00158-0
  38. Nielsen, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microb Ecol. 86: 357−362 https://doi.org/10.1016/0378-1097(92)90800-4
  39. Nielsen, L.P., Risgaard-Petersen, N., Rysgaard, S. and Blackburn, T.H., 1996. Reply to the note by Middelburg et al. Limnol. Oceanogr. 41: 1845−1846 https://doi.org/10.4319/lo.1996.41.8.1845
  40. Nowicki, B.L., Requintina, E., van Keuren, D. and Kelly, J.R., 1997. Nitrogen losses through sediment denitrification in Boston Harbor and Massachusetts Bay. Estuaries 20: 626−639 https://doi.org/10.2307/1352620
  41. Pilskaln, C.H., Paduan, J.B. and Chavez, F.P., 1997. Carbon export and regeneration in the coastal upwelling system of Monterey Bay, central California. Oceanographic Literature Review 44: 685−686 https://doi.org/10.1357/0022240963213772
  42. Rabouille, C., Denis, L., Dedieu, K., Stora, G., Lansard B. and Grenz, C., 2003. Oxygen demand in Coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations. J. Exp. Mar. Biol. Ecol. 285−286, 49−69 https://doi.org/10.1016/S0022-0981(02)00519-1
  43. Reschke, C.J., Ittekkot, V. and Panin, N., 2000. The nature of organic matter in the Danube river particles and north-western Black Sea sediments. Estuarine Coastal Shelf Sci. 54: 563−574 https://doi.org/10.1006/ecss.2000.0665
  44. Romero, O., Boeckel, B., Donner, B., Lavik, G., Fischer, G. and Wefer, G., 2002. Seasonal productivity dynamics in the pelagic central Benguela System inferred from the flux of carbonate and silicate organisms. J. Marine Systems 37, 259−278 https://doi.org/10.1016/S0924-7963(02)00189-6
  45. Rowe, G.T., Morse, J., Nunnally, C. and Boland, G.S., 2008. Sediment community oxygen consumption in the deep Gulf of Mexico. Deep-Sea Research II 55: 2686−2691 https://doi.org/10.1016/j.dsr2.2008.07.018
  46. Sayles, F.L., Martin, W.R. and Deuser, W.G., 1994. Response of benthic oxygen demand to particulate organic carbon supply in the deep sea near Bermuda. Nature 371: 686−689 https://doi.org/10.1038/371686a0
  47. Seiki, T., Izawa, H., Date, E. and Sunahara H., 1994. Sediment oxygen demand in Hiroshima bay. Wat. Res. 28: 385−393 https://doi.org/10.1016/0043-1354(94)90276-3
  48. Seitzinger, S.P. and Giblin, A.E., 1996. Estimating denitrification in North Atlantic continental shelf sediments. Biogeochemistry 35: 235−260 https://doi.org/10.1007/BF02179829
  49. Smith, D.C., Simon, M., Alldredge, A.L. and Azam, F., 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359: 139−142 https://doi.org/10.1038/359139a0
  50. Smith, K.L., Jr. Lauer, M.B. and Brown, N.O., 1983. Sediment community oxygen consumption and nutrient exchange in the central and eastern North Pacific. Limnol. Oceanogr., 28(5), 882−898 https://doi.org/10.4319/lo.1983.28.5.0882
  51. Soetaert, K., Herman, P.M.J. and Middelburg, J.J., 1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta, 60(6): 1019−1040 https://doi.org/10.1016/0016-7037(96)00013-0
  52. Sorensen, J., Hydes, D. J. and Wilson, T. R. S., 1984. Denitrification in a deep-sea sediment core from the eastern equatorial Atlantic. Limnol. Oceanogr. 29: 653−657 https://doi.org/10.4319/lo.1984.29.3.0653
  53. Sprengel, C., Baumann K.H. and Neuer, S., 2000. Seasonal and interannual variation of coccolithophore fluxes and species compositions in sediment traps north of Gran Canaria ($29^{\circ}$N $15^{\circ}$W). Marine Micropaleontology 39: 157−178 https://doi.org/10.1016/S0377-8398(00)00019-0
  54. Straub, K.L., Benz, M., Schink, B. and Widdel, F., 1996. Anaerobic, nitrate dependent microbial oxidation of ferrous iron. J. Appl. Environ. Microbiol. 62: 1458−1460
  55. Tuominen, L., Heinanen, A., Kuparinen, J. and Nielsen, L.P., 1998. Spatial and temporal variability of denitrification in the sediments of the northern Baltic Proper. Marine Ecology Progress Series 172: 13−24 https://doi.org/10.3354/meps172013
  56. Walsh, J.J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350: 53–55 https://doi.org/10.1038/350053a0
  57. Walsh, J.P. and Nittrouer, C.A., 1999. Observations of sediment flux to the Eel continental slope, northern California. Marine Geology 154: 55−68 https://doi.org/10.1016/S0025-3227(98)00103-0
  58. Wenzhofer, F., Holby O. and Khols, O., 2001. Deep penetrating benthic oxygen profiles measured in situ by oxygen optodes. Deep-Sea Research I 48: 1741−1755 https://doi.org/10.1016/S0967-0637(00)00108-4
  59. Wijsman, J.W. M., Herman, P.M.J., Middelburg, J.J. and Soetaert, K., 2002. A Model for Early Diagenetic Processes in Sediments of the Continental Shelf of the Black Sea. Estuarine, Coastal and Shelf Science, 53: 403−421 https://doi.org/10.1006/ecss.2000.0655
  60. Yanagi, T., 2002. Water, Salt, Phosphorus and Nitrogen Budgets of the Japan Sea. Oceanography 58, 797−804 https://doi.org/10.1023/A:1022815027968
  61. Yool, A., Martin, A.P., Ferna'ndez, C. and Clark, D.R., 2007. The significance of nitrification for oceanic new production. Nature 447: 999−1002 https://doi.org/10.1038/nature05885
  62. Zehr, J.P. and Ward, B.B., 2002. Nitrogen cycling in the ocean: New perspectives on processes and Paradigms. Environmental Microbiology 68: 1015−1024 https://doi.org/10.1128/AEM.68.3.1015-1024.2002
  63. Ziveri, P., Broerse, A., van Hinte, J.E., Wesbroek, P. and Honjo, S., 2000. The fate of coccoliths at 48N 21W, north eastern Atlantic. Deep-Sea Research II 47: 1853−1875 https://doi.org/10.1016/S0967-0645(00)00009-6
  64. Zumft, W.G., 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533−616