Plio-Quaternary Seismic Stratigraphy and Depositional History on the Southern Ulleung Basin, East Sea

동해 울릉분지 남부의 플라이오-제4기 탄성파 층서 및 퇴적역사

  • Joh, Min-Hui (Department of Petroleum Resources Technology, University of Science and Technology) ;
  • Yoo, Dong-Geun (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM))
  • 조민희 (과학기술연합대학원대학교 석유자원공학과) ;
  • 유동근 (한국지질자원연구원 석유해저연구본부)
  • Published : 2009.05.31

Abstract

Analysis of multi-channel seismic reflection data from the Southern Ulleung Basin reveals that Plio-Quaternary section in the area consists of nine stacked sedimentary units separated by erosional unconformities. On the southern slope, these sedimentary units are acoustically characterized by chaotic seismic facies without distinct internal reflections, interpreted as debris-flow bodies. Toward the basin floor, the sedimentary units are defined by well-stratified facies with good continuity and strong amplitude, interpreted as turbidite/hemipelagic sediments. The seismic facies distribution suggests that deposition of Plio-Quaternary section in the area was controlled mainly by tectonic movement and sea-level fluctuations. During the Pliocene, sedimentation was mainly controlled by tectonic movements related to the back-arc closure of the East Sea. The back-arc closure that began in the Miocene caused compressional deformation along the southern margin of the Ulleung Basin, resulting in regional uplift which continued until the Pliocene. Large amounts of sediments, eroded from the uplifted crustal blocks, were supplied to the basin, depositing Unit 1 which consists of debris-flow deposits. During the Quaternary, sea-level fluctuations resulted in stacked sedimentary units (2-9) consisting of debris-flow deposits, formed during sea-level fall and lowstands, and thin hemipelagic/turbidite sediments, deposited during sea-level rise and highstands.

동해 울릉분지 남부에서 취득한 다중채널 탄성파 탐사자료의 해석에 의하면 연구지역에 분포하는 플라이오-제4기 퇴적층은 침식부정합면에 의해 구분되는 9개의 퇴적단위가 중첩된 형태로 구성되어있다. 탄성파 단면상에서 각 퇴적단위는 남쪽사면의 경우 질량류 퇴적층으로 해석되는 캐오틱한 음향상 특징이 주로 나타나며, 북쪽 중앙분지로 향하면서 저탁류/반원양성 퇴적층으로 해석되는 연속성이 양호하고 진폭이 강한 평행 층리 음향상이 나타난다. 퇴적단위의 분포 및 탄성파상 특징에 의하면 플라이오-제4기 동안의 퇴적작용은 주로 지구조 운동과 해수면 변동에 의해 조절된 것으로 해석된다. 플라이오세 동안의 퇴적작용은 주로 동해의 닫힘작용과 연계된 지구조 운동의 영향이 있었다. 중-후기 마이오세 이후 동해는 횡압력에 의한 닫힘작용이 시작되었으며 플라이오세 말까지 횡압력의 영향으로 광역적인 융기가 야기되었다. 따라서 이때 형성된 다량의 침식 퇴적물이 분지로 유입되었으며 주로 쇄설류로 구성된 퇴적단위 1을 형성하게 되었다. 제4기에 접어들면서 중첩된 형태로 분포하는 퇴적단위 2-9의 발달은 주로 주기적으로 반복되는 해침과 해퇴의 영향에 의해 조절되었다. 반복적으로 진행된 해퇴 및 저해수면 조건이 주로 남쪽사면을 중심으로 분포하는 쇄설류의 퇴적을 야기시켰으며, 해수면 상승기간 동안에는 쇄설류 층이 얇은 반원양성 내지는 원양성 퇴적물에 의해 피복되었다. 결과적으로 연구해역에 분포하는 플라이오-제4기 퇴적층은 쇄설류와 저탁류/반원양성을 포함하는 질량류의 중첩에 의해 구성된다.

Keywords

References

  1. 민건홍, 1994. 한반도 남동대륙붕의 플라이오세-현세 퇴적층의 탄성파층서 및 퇴적사. 서울대학교 박사학위논문, 196pp
  2. 신국선, 2000. 울릉분지 남서주변부 비변형대 제3기 퇴적층의 순차층서. 연세대학교 박사학위논문, 149pp
  3. 유동근, 강동효, 구남형, 김원식, 김길영, 김병엽, 정순홍, 김영준, 이호영, 박근필, 이광훈, 박수철, 2008. 동해 울릉분지의 가스 하이드레이트 부존 지구물리증거. 지질학회지, 44: 645−655
  4. 유동근, 이치원, 민건홍, 한혁수, 박수철, 김대철, 2006. 한반도 남동해역 대륙붕 퇴적층의 플라이오-제4기 탄성파 층서 및 퇴적작용. 지질학회지, 42: 507−522
  5. 천종화, 허식, 한상준, 유해수, 김원균, 정대교, 이영주, 2000. 후기 플라이스토세 이후 울릉분지 남부 대륙사면의 퇴적환경. 한국석유지질학회, 제7차 학술발표회 논문집, 31−38
  6. 최동림, 1995. 동해 울릉분지 남쪽 연변부의 신생대 탄성파 퇴적층서, 지질구조 및 지구조 진화. 인하대학교 박사학위논문, 115pp
  7. 한국지질자원연구원, 2007. 가스하이드레이트 지구물리탐사 연구보고서. 한국지질자원연구원, NP2007-020-2007(1), 649pp
  8. 한국지질자원연구원, 2006. 탄성파 탐사기술을 이용한 한반도 남동부해역의 층서 및 지구조 연구. 한국지질자원연구원, OAA2004005-2006(3), 194pp
  9. 허 식, 유해수, 김한준, 한상준, 이용국, 2004. 동해 울릉분지 남부해역에 분포하는 가스 하이드레이트층의 특성 연구. 석유지질학회지, 10: 18−22
  10. Aksu, A.E., D.J.W. Piper and T. Konuk, 1987. Late Quaternary tectonic and sedimentary history of outer Izmir and Candarli Bays, western Turkey. Marine Geology, 76: 89−104 https://doi.org/10.1016/0025-3227(87)90019-3
  11. Aksu, A.E., A. Ulug, D.J.W. Piper, Y.T. Konuk and S. Turgut, 1992a. Quaternary sedimentary history of Adana, Cilicia and Iskenderun Basins: northeast Mediterranean Sea. Marine Geology, 104: 55−71 https://doi.org/10.1016/0025-3227(92)90084-U
  12. Aksu, A.E., T.J. Calon, D.J.W. Piper, S. Turgut and E. Izdar, 1992b. Architecture of late orogenic Quaternary basins in northeastern Mediterranean Sea. Tectonophysics, 210: 191−213 https://doi.org/10.1016/0040-1951(92)90322-W
  13. Boyd, R., J. Suter and S. Penland, 1989. Relation of sequence stratigraphy to modern sedimentary environments. Geology, 17: 926−929 https://doi.org/10.1130/0091-7613(1989)017<0926:ROSSTM>2.3.CO;2
  14. Chough, S.K., H.J. Lee and S.H. Yoon, 2000. Marine Geology of Korea Seas (2nd edition). Elsevier, Amsterdam, 313pp
  15. Chough, S.K., K.S. Jeong and E. Honza, 1985. Zoned facies of massflow deposits in the Ulleung(Tsushima) Basin, East Sea(Sea of Japan). Marine Geology, 65: 113−125 https://doi.org/10.1016/0025-3227(85)90049-0
  16. Chough, S.K., S.H. Lee, J.W. Kim, S.C. Park, D.G. Yoo, H.S. Han, S.H. Yoon, S.B. Oh, Y.B. Kim and G.G. Back, 1997. Chirp (2- 7 kHz) echo characters in the Ulleung Basin. Geoscience Journal, 1: 143−153 https://doi.org/10.1007/BF02910206
  17. Crutchley, G.J., A.R. Gorman and M. Fohrmann, 2007. Investigation of the role of gas hydrates in continental slope stability west of Fiordland, New Zealand. New Zealand Journal of Geology and Geophysics, 50: 357−364 https://doi.org/10.1080/00288300709509842
  18. Damuth, J.E., 1978. Echo Character of the Norwegian-Greenland Sea: Relationship to Quaternary sedimentation. Marine Geology, 28: 1−36 https://doi.org/10.1016/0025-3227(78)90094-4
  19. Ericilla, G., B. Alonso and J. Baraza, 1994. Post-Calabrian sequence stratigraphy of the northwestern Alboran Sea (southwestern Mediterranean). Marine Geology, 120: 249−265 https://doi.org/10.1016/0025-3227(94)90061-2
  20. Faure, M. and F. Lalevee, 1987. Bent structural trends of Japan: Flexural-slip folding related to the Neogene opening of the Sea of Japan. Geology, 15: 49−52 https://doi.org/10.1130/0091-7613(1987)15<49:BSTOJF>2.0.CO;2
  21. Garziglia, S., S. Migeon, E. Ducassou, L. Loncke and J. Mascle, 2008. Mass-transport deposits in the Rosetta province (NW Nile deep-sea turbidite system, Egyptian margin): Characteristics, distribution, and potential causal processes. Marine Geology, 250: 180−198 https://doi.org/10.1016/j.margeo.2008.01.016
  22. Hiscott, R.N. and A.E. Aksu, 1996. Quaternary sedimentary processes and Budgets in Orphan Southwestern Labrador Sea. Quaternary Research, 45: 160−175 https://doi.org/10.1006/qres.1996.0017
  23. Ingle, J.C. Jr, 1992. Subsidence of the Japan Sea: Stratigraphic evidence from ODP sites and onshore sections. Proceedings of the Ocean Drilling Program, Scientific Results, 127/128 (part2): 1190−1218
  24. Jansen, E., S. Befring, T. Bugge, T. Eidvin, H. Holtedahl and H.P. Sejrup, 1987. Large submarine slides on the Norwegian continental margin: Sediments, transport and timing. Marine Geology, 78: 77−107 https://doi.org/10.1016/0025-3227(87)90069-7
  25. Jolivet, L. and K. Tamaki, 1992. Neogene kinematics in the Japan Sea region and volcanic activity of the Northeast Japan Arc. Proceedings of the Ocean Drilling Program, Scientific Results, 127/128 (part2): 1311−1331
  26. Kennett, J.P., 1982. Marine Geology, Prentice-Hall, New Jersey. 813pp
  27. Lallemand, S. and L. Jolivet, 1986. Japan Sea: a pull-apart basin? Earth and Planetary Science Letters, 76: 375−389 https://doi.org/10.1016/0012-821X(86)90088-9
  28. Lee, G.H. and B.C. Suk, 1998. Latest Neogene-Quaternary seismic stratigraphy of the Ulleung Basin, East Sea (Sea of Japan). Marine Geology, 146: 205−224 https://doi.org/10.1016/S0025-3227(97)00123-0
  29. Lee, G.H., H.J. Kim, S.J. Han and D.C. Kim, 2001. Seismic stratigraphy of the Ulleung Basin in the East Sea (Japan sea) back-arc basin. Marine and Petroleum Geology, 18: 615−634 https://doi.org/10.1016/S0264-8172(01)00016-2
  30. Lee, H.J., S.K. Chough and S.H. Yoon, 1996. Slope-stability change from late Pleistocene to Holocene in the Ulleung Basin, East Sea (Japan sea). Sedimentary Geology, 104: 39−51 https://doi.org/10.1016/0037-0738(95)00119-0
  31. Lee, S.H., S.K. Chough, G.G. Back and Y.B. Kim, 2002. Chirp(2-7 kHz) echo characters of the South Korea Plateau, East Sea: Styles of mass movement and sediment gravity flow. Marine Geology, 184: 227−247 https://doi.org/10.1016/S0025-3227(01)00283-3
  32. Lee, S.H., S.K. Chough, G.G. Back, Y.B. Kim and B.S. Sung, 1999. Gradual downslope change in high-resolution acoustic characters and geometry of large-scale submarine debris lobes in Ulleung Basin, East Sea (Sea of Japan), Korea. Geo-Marine Letters, 19: 254−261 https://doi.org/10.1007/s003670050116
  33. Mitchum, R.M., JR. Vail, P.R. and J.B. Sangree, 1977. Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: C.E. Payton, (Editor), Seismic Stratigraphy Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists, Memoir 26: 117−133
  34. Normark, W.R., D.J.W. Piper and R.N. Hiscott, 1998. Sea level controls on the textural characteristics and depositional architecture of the Hueneme and associated submarine fan systems, Santa Monica Basin, California. Sedimentology, 45: 53−70 https://doi.org/10.1046/j.1365-3091.1998.00139.x
  35. Otofuji, Y.I. and T. Matsuda, 1987. Amount of clockwise rotation of southwest Japan-fan shape opening of the southwestern part of the Japan Sea. Earth and Planetary Science Letters, 85: 289−301 https://doi.org/10.1016/0012-821X(87)90039-2
  36. Park, S.J., 1998. Stratal patterns in the Southwestern margin of Ulleung Back-arc Basin; A Sequence Stratigraphic Analysis. Ph. D. thesis, Seoul National University, Seoul, 169pp
  37. Posamentier, H.W., M.T. Jervey and P,R. Vail, 1988. Eustatic controls on clastic deposition I-Conceptual framework. In: Wiligus, C.K., Posamentier, H., Ross, C.A. and kendall, C.G.St.C., (eds.), Sea-Level Changes: An Integrated Approach. SEPM Sepc. Publ., 42: 124−154
  38. Sultan, N., P. Cochonat, J.-P. Foucher and J. Mienert, 2004. Effect of gas Hydrates melting on seafloor slope instability. Marine Geology, 213: 379−401 https://doi.org/10.1016/j.margeo.2004.10.015
  39. Summerhayes, C.P., B.D. Bornhold and R.W. Embley, 1979. Surficial slides and slumps on the continental slope and rise of South West Africa: A reconnaissance study. Marine Geology, 31: 265−277 https://doi.org/10.1016/0025-3227(79)90037-9
  40. Tamaki, K., K. Suyehiro, J. Allean, J.C. Jr. Ingle and K.A. Pisciotto, 1992. Tectonic synthesis and implications of Japan Sea ODP Drilling. Proceedings of the Ocean Drilling Program, Scientific Results, 127/128 (part2): 1333−1348
  41. Tesson, M., H.W. Posamentier and B. Gensous, 2000. Stratigraphy organization of late Pleistocene deposits of the western part of the Golfe du Lion Shelf (Languedoc Shelf), western Mediterranean Sea, using high-resolution seismic and core data. American Association of Petroleum Geologists, 84: 119−150 https://doi.org/10.1306/C9EBCD83-1735-11D7-8645000102C1865D
  42. Tortora, P., 1996. Depositional and erosional coastal processes during the last postglacial sea-level rise: An example from the central Tyrrhenian continental shelf (Italy). Journal of Sediment Research, 66: 391−405 https://doi.org/10.1306/D4268356-2B26-11D7-8648000102C1865D
  43. Vail, P.R., 1987. Seismic stratigraphy interpretation using sequence stratigraphy. Part 1: Seismic stratigraphy interpretation procedure. AAPG Stud. Geol., 27: 1−10
  44. Wright, S.G. and E.M. Rathje, 2003. Triggering mechanisms of slope instability and their relationship to earthquakes and tsunamis. Pure and Applied Geophysics, 160: 1865−1877 https://doi.org/10.1007/s00024-003-2410-4
  45. Yoon, S.H. and S.K. Chough, 1995. Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (Sea of Japan). Geological Society of America Bulletin, 107: 83−97 https://doi.org/10.1130/0016-7606(1995)107<0083:RSSITE>2.3.CO;2
  46. Yoon, S.H., S.K. Chough and S.J. Park, 2003. Sequence model and its application to a Miocene shelf-slope system in the tectonically active Ulleung Basin margin, East Sea (Sea of Japan). Marine and Petroleum Geology, 20: 1089−1103 https://doi.org/10.1016/j.marpetgeo.2003.08.001