DOI QR코드

DOI QR Code

Computational Fluid Dynamic Modeling for Internal Antenna Type Inductively Coupled Plasma Systems

CFD를 이용한 내장형 안테나 유도 결합 플라즈마 시스템 모델링

  • Joo, Jung-Hoon (Department of Materials Science and Engineering & Plasma Materials Research Center, Kunsan National University)
  • 주정훈 (군산대학교 공과대학 신소재공학과)
  • Published : 2009.05.30

Abstract

CFD is used to analyze gas flow characteristics, power absorption, electron temperature, electron density and chemical species profile of an internal antenna type inductively coupled plasma system. An optimized grid generation technology is used for a complex real-scale models for industry. A bare metal antenna shows concentrated power absorption around rf a feeding line. Skin depth of power absorption for a system is modeled to 50 mm, which is reported 53 mm by experiments. For an application of bipolar plates for hydrogen fuel cells, multi-sheet loading ICP nitriding system is proposed using an internal ICP antenna. It shows higher atomic nitrogen density than reported simple pulsed dc nitriding systems. Minimum gap between sheets for uniform nitriding is modeled to be 39 mm.

전산 유체 역학 코드를 사용하여 안테나 내장형 유도 결합 플라즈마 시스템의 가스 유동 특성, 전력 흡수, 전자 온도, 전자 밀도, 화학종의 분포에 대해서 살펴보았다. 복잡한 현실적 3차원 시스템에 대한 안정한 수치해의 도출을 위해서 최적화된 격자생성 전략을 구사하였으며, 이를 이용하여 플라즈마 질화 시스템을 한 예로 전력 흡수, 가스 유동, 전자 온도, 전자 밀도, 화학종의 분포를 분석하였다. 금속 노출형 안테나의 경우 전력 도입부 쪽에 전력 흡수의 불균형이 모델에서 예측되었으며 유전체피복 안테나의 한 예에서 전력 흡수 표피 깊이가 실제 보고된 값인 53 mm와 잘 일치하는 50 mm로 예측되었다. 또한 수소연료 전지 분리판을 위한 고속 질화 공정용 시스템의 모델링에서도 산업용 대량 처리 시스템에 적절한 다중 분리판의 장입 간격을 가스 유동, 활발한 질화종인 질소 원자와 질소 분자 이온의 농도를 근거로 예측하였다.

Keywords

References

  1. S. Rossnagel and J. Hopwood, Appl. Phys. Lett. 63, 3285 (1993) https://doi.org/10.1063/1.110176
  2. 손채화, 한국전기학회논문지 55C, 601 (2006)
  3. Yang Yang and Mark J. Kushner, J. Vac. Sci. Technol A, 25, 1420 (2008) https://doi.org/10.1116/1.2771558
  4. A. Mayo, S. Hamaguchi, J. Joo, and S. Rossnagel, J. Vac. Sci. Technol B, 15, 1788 (1997) https://doi.org/10.1116/1.589526
  5. Junghoon Joo, J. Vac. Sci. Technol A, 17, 2368 (1999) https://doi.org/10.1116/1.581914
  6. Junghoon Joo, J. Vac. Sci. Technol A, 18, 23 (2000) https://doi.org/10.1116/1.582153
  7. Ju-Wan Lim, Heung-Sik Park, Tae-Hyeong Park, Jung-Joong Lee, and Junghoon Joo, J. Vac. Sci. Technol A, 18, 524 (2000) https://doi.org/10.1116/1.582219
  8. Junghoon Joo, J. Vac. Sci. Technol A, 18, 2006 (2000) https://doi.org/10.1116/1.582463
  9. H. S. Park, D. H. Jung, H. D. Na, J. H. Joo, and J. J. Lee, Surf. Coat. Technol., 142-144, 999 (2001) https://doi.org/10.1016/S0257-8972(01)01217-8
  10. S. J. Jung, K. H. Lee, J. J. Lee, and J. H. Joo, Surf. Coat. Technol., 169-170, 363 (2003) https://doi.org/10.1016/S0257-8972(03)00035-5
  11. D. H. Jung, H. S. Park, H. D. Na, J. W. Lim, J. J. Lee, and J. H. Joo, Surf. Coat. Technol., 169-170, 424 (2003) https://doi.org/10.1016/S0257-8972(03)00146-4
  12. H. D. Na, H. S. Park, D. H. Jung, G. R. Lee, J. H. Joo, and J. J. Lee, Surf. Coat. Technol., 169-170, 41 (2003) https://doi.org/10.1016/S0257-8972(03)00071-9
  13. Jungjoong Lee and Junghoon Joo, Surf. Coat. Technol., 169-170, 353 (2003) https://doi.org/10.1016/S0257-8972(03)00112-9
  14. Dong-Kak Lee, Jung-Joong Lee, and Junghoon Joo, Surf. Coat. Technol., 171, 24 (2003) https://doi.org/10.1016/S0257-8972(03)00230-5
  15. Dong-Kak Lee, Jung-Joong Lee, and Junghoon Joo, Surf. Coat. Technol., 173-174, 1234 (2003)
  16. Bohwan Park, Dong-Ha Jung, Girak Lee, Jung- Joong Lee, and Jung-Hoon Joo, Surf. Coat. Technol., 174-175, 643 (2003) https://doi.org/10.1016/S0257-8972(03)00354-2
  17. D. H. Jung, H. Kim, G. R. Lee, B. Park, J. J. Lee, and J. H. Joo, Surf. Coat. Technol., 174-175, 638 (2003) https://doi.org/10.1016/S0257-8972(03)00651-0
  18. Yeonghun Han, S. J. Jung, J.-J. Lee, and J. H. Joo, Surf. Coat. Technol., 174-175, 235 (2003) https://doi.org/10.1016/S0257-8972(03)00619-4
  19. Dae-Hwan Kang, Dong-Kak Lee, Ki-Bum Kim, Jung-Joong Lee, and Junghoon Joo, Appl. Phys. Lett., 84, 3283 (2004) https://doi.org/10.1063/1.1715140
  20. S. J. Jung, Y. H. Han, B. M. Koo, J. J. Lee, and J. H. Joo, Thin Solid Films, 475, 275 (2005) https://doi.org/10.1016/j.tsf.2004.08.058
  21. H. Y. Lee, D. K. Lee, D. H. Kang, J. J. Lee, and J. H. Joo, Surf. Coat. Technol., 193, 152 (2005) https://doi.org/10.1016/j.surfcoat.2004.08.134
  22. H. Kim, D. H. Jung, B. Park, K. C. Yoo, J. J. Lee, and J. H. Joo, Surf. Coat. Technol., 193, 255 (2005) https://doi.org/10.1016/j.surfcoat.2004.07.027
  23. Bohwan Park, Dong-Ha Jung, Hoon Kim, Keun-Cheol Yoo, Jung-Joong Lee, and Junghoon Joo, Surf. Coat. Technol., 200, 726 (2005) https://doi.org/10.1016/j.surfcoat.2005.01.064
  24. S. J. Jung, B. M. Koo, Y. H. Han, J. J. Lee, and J. H. Joo, Surf. Coat. Technol., 200, 862 (2005) https://doi.org/10.1016/j.surfcoat.2005.02.207
  25. Wonkyun Yang and Junghoon Joo, J. Kor. Phys. Soc. 54, 971 (2009) https://doi.org/10.3938/jkps.54.971
  26. 배상현, 권득철, 윤남식 한국진공학회지 17, 426 (2008) https://doi.org/10.5757/JKVS.2008.17.5.426
  27. ESI CFD Inc, CFD-ACE+ V2006 User manual, ESI-CFD Inc, 2006, 361
  28. Paul A. Miller and Merle E. Riley, J. Appl. Phys. 82, 3689 (1997) https://doi.org/10.1063/1.365732
  29. Yuichi Setsuhara, Shoji Miyake, Yochi Sakawa, and Tatsuo Shoji, Surf. Coat. Technol 136, 60 (2001) https://doi.org/10.1016/S0257-8972(00)01060-4
  30. Dong-Kak Lee, Jung-Joong Lee, and Junghoon Joo, Surf. Coat. Technol. 173-174, 1234 (2003)
  31. 김곤호, 양성채, 플라즈마 일렉트로닉스, (주)교학사, 2006, 150
  32. K. H. Bai, D. S. Lee, and H. Y. Chang, Appl. Phys. Lett., 80, 3907 (2002) https://doi.org/10.1063/1.1479452
  33. K. H. Bai and H. Y. Chang., Appl. Phys. Lett., 87, 121502 (2005) https://doi.org/10.1063/1.2056595
  34. Bong-Yong Jung and Myung-Ho Kim, J. Kor. Inst. Met. Mater., 37, 1522 (1999)
  35. Peter Kaestner, Thorsten Michler, Hans Weidner, Kyong-Tschong Rie, and Gunter Brauer, Surf. Coat. Technol. 203, 897 (2008) https://doi.org/10.1016/j.surfcoat.2008.08.024

Cited by

  1. Numerical Modeling of a Rectangular Type Inductively Coupled Plasma System vol.45, pp.4, 2012, https://doi.org/10.5695/JKISE.2012.45.4.174
  2. Numerical Modeling of Very High Frequency Multi Hollow Cathode PECVD vol.19, pp.5, 2010, https://doi.org/10.5757/JKVS.2010.19.5.331
  3. Numerical Modeling of Plasma Characteristics of ICP System with a Pulsed dc Bias vol.43, pp.3, 2010, https://doi.org/10.5695/JKISE.2010.43.3.154