DOI QR코드

DOI QR Code

Characterization of Al-Doped ZnO Thin Film Grown on Buffer Layer with RF Magnetron Sputtering Method

버퍼 층을 이용한 RF 마그네트론 스퍼터 방법에 의한 Al:ZnO 박막의 성장

  • No, Young-Soo (Thin Film Material Research Center, Korea Institute of Science and Technology) ;
  • Park, Dong-Hee (Thin Film Material Research Center, Korea Institute of Science and Technology) ;
  • Kim, Tae-Whan (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Choi, Ji-Won (Thin Film Material Research Center, Korea Institute of Science and Technology) ;
  • Choi, Won-Kook (Thin Film Material Research Center, Korea Institute of Science and Technology)
  • Published : 2009.05.30

Abstract

The optimal condition of low temperature deposition of transparent conductive Al-doped zinc oxide (AZO) films is studied by RF magnetron sputtering method. To achieve enhanced-electrical property and good crystallites quality, we tried to deposit on glass using a two-step growth process. This process was to deposit AZO buffer layer with optimal growth condition on glass in-situ state. The AZO film grown at rf 120 W on buffer layer prepared at RF $50{\sim}60\;W$ shows the electrical resistivity $3.9{\times}10^{-4}{\Omega}cm$, Carrier concentration $1.22{\times}10^{21}/cm^3$, and mobility $9.9\;cm^2/Vs$ in these results, The crystallinity of AZO film on buffer layer was similar to that of AZO film on glass with no buffer later but the electrical properties of the AZO film were 30% improved than that of the AZO film with no buffer layer. Therefore, the cause of enhanced electrical properties was explained to be dependent on degree of crystallization and on buffer layer's compressive stress by variation of $Ar^+$ ion impinging energy.

Al이 도핑된 투명 전도성 Al:ZnO (AZO) 박막에 대한 RF magnetron sputtering 증착 법을 이용한 저온 최적공정조건을 연구하였다. 투명전극 재료로써의 AZO 박막의 전기적, 결정학적 물성을 최대한 향상시키기 위해서, in-situ상태에서 유리기판상에 최적화된 증착 조건의 AZO 버퍼 층을 삽입하는 이중박막 구조를 제작하였다. RF 인가 전력 $50{\sim}60\;W$에서 증착된 버퍼층 위에 120 W의 RF 전력에서 성장한 AZO 박막의 경우, 비저항 $3.9{\times}10^{-4}{\Omega}cm$, 전하 캐리어농도 $1.22{\times}10^{21}/cm^3$, 홀 이동도 $9.9\;cm^2/Vs$의 전기적 특성을 보였다. 이러한 결과는 버퍼 층이 없는 기존의 단일 구조와 비슷하나, 전기적 비저항 특성을 약 30% 정도 향상시킬 수 있었으며, 전기적 특성의 향상 원인을 $Ar^+$ 이온의 입사 에너지의 변화에 따른 버퍼 층의 압축응력과 결정화 정도와의 의존성으로 설명하였다.

Keywords

References

  1. D. G. Hwang, G. H. Band, and J. M. Myung, Bulletin of Korea Institute of Electrical and Electronic Material Engineers, 15, 6, 35 (2002)
  2. T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 24, L781 (1985) https://doi.org/10.1143/JJAP.24.L781
  3. Ch. Sujatha, G. Mohan Rao, and S. Uthanna, Matter Sci. Engin. 94, 106 (2002) https://doi.org/10.1016/S0921-5107(02)00090-9
  4. W. J. Jeong and G. C. Park, Solar Energy Mater. Solar Cells 6538 (2001)
  5. J. D. Lee and J. T. Song, 전기전자재료학회논문지 9, 2, 199 (1996)
  6. 이승환, 성영권, 김종관, 전기전자재료학회논문지 10, 2, 128 (1997)
  7. 최우성, 소병문, 홍진웅, 전기전재재료학회논문지 9, 6, 573 (1996)
  8. 유동근, 김명화, 정성훈, 부진효, 한국진공학회지, 17, 1, 73 (2008) https://doi.org/10.5757/JKVS.2008.17.1.073
  9. 김희수, 한국진공학회지, 16, 3, 205 (2007) https://doi.org/10.5757/JKVS.2007.16.3.205
  10. T. Minami, Thin Solid Films 516, 5822 (2008) https://doi.org/10.1016/j.tsf.2007.10.063
  11. U. S. Choi, B. M. So, and J. W. Hong, J. Korean Institute of Electrical and Electronic Material Engineers, 9, 572 (1996)
  12. Y. Igasaki and H. Kanma, Appl. Surf. Sci. 169, 508 (2001) https://doi.org/10.1016/S0169-4332(00)00748-0
  13. H. Kim, A. Pique, and J. S. Horwitz, Appl. Phys. Lett. 74, 3444 (1999) https://doi.org/10.1063/1.124122
  14. A. Segm Uller and M. Murakami, in 'Analytical Techniques for Thin Films', editedby K. N. Tu and R. Rosenberg (Academic Press, Inc., Boston, 1988) p. 143
  15. I. Broser, H. Nelkowski, and G. Nimitz, in Semiconductors, Group III, Vol. 17 of Landolt-Bornstein, edited by O. Madelung, M. Schultz, and H. Weiss (Springer-Verlag, Berlin, 1982)
  16. K. Meyer, I. K. Schuller, and C. M. Falco, J. Appl. Phys. 52, 5803 (1981) https://doi.org/10.1063/1.329473
  17. D. Dir, J. Vac. Sci. Technol. A4, 2954 (1986) https://doi.org/10.1116/1.573667
  18. D. R. Mckenzie, D. A. Muller, and B. A. Pailthrope, Phys. Rev. Lett. 67, 773 (1991) https://doi.org/10.1103/PhysRevLett.67.773
  19. C. A. Davis, Thin Solid Films 226, 33 (1993) https://doi.org/10.1016/0040-6090(93)90201-Y
  20. R. Cebulla, R. Wendt, and K. Ellmer, J. Appl. Phys. 83, 15 (1998) https://doi.org/10.1063/1.366695

Cited by

  1. Structural and Optical Properties of ZnO/Glass Thin Films Grown by Radio-Frequency Magnetron Sputtering with a Powder Target vol.18, pp.5, 2009, https://doi.org/10.5757/JKVS.2009.18.5.394
  2. Study of Low Reflectance and RF Frequency by Rie Surface Texture Process in Multi Crystall Silicon Solar Cells vol.19, pp.2, 2010, https://doi.org/10.5757/JKVS.2010.19.2.114
  3. Optical Properties of Al and Al2O3Coated ZnO Nanorods vol.19, pp.5, 2010, https://doi.org/10.5757/JKVS.2010.19.5.385