DOI QR코드

DOI QR Code

Millimeter-Scale Aligned Carbon Nanotubes Synthesized by Oxygen-Assisted Microwave Plasma CVD

MPCVD를 이용하여 밀리미터 길이로 수직 정렬된 탄소나노튜브의 합성

  • Kim, Y.S. (BK21 Physics Research Division and Center for Nanotubes and Nanostructured Composites (CNNC), SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Song, W.S. (BK21 Physics Research Division and Center for Nanotubes and Nanostructured Composites (CNNC), SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Lee, S.Y. (BK21 Physics Research Division and Center for Nanotubes and Nanostructured Composites (CNNC), SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Choi, W.C. (BK21 Physics Research Division and Center for Nanotubes and Nanostructured Composites (CNNC), SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Park, C.Y. (BK21 Physics Research Division and Center for Nanotubes and Nanostructured Composites (CNNC), SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
  • 김유석 (나노튜브 및 나노복합구조 연구센터, 성균나노과학기술원, BK21 물리연구단, 성균관대학교) ;
  • 송우석 (나노튜브 및 나노복합구조 연구센터, 성균나노과학기술원, BK21 물리연구단, 성균관대학교) ;
  • 이승엽 (나노튜브 및 나노복합구조 연구센터, 성균나노과학기술원, BK21 물리연구단, 성균관대학교) ;
  • 최원철 (나노튜브 및 나노복합구조 연구센터, 성균나노과학기술원, BK21 물리연구단, 성균관대학교) ;
  • 박종윤 (나노튜브 및 나노복합구조 연구센터, 성균나노과학기술원, BK21 물리연구단, 성균관대학교)
  • Published : 2009.05.30

Abstract

Millimeter-scale aligned arrays of thin-multiwalled carbon nanotube (t-MWCNT) on layered Si substrates have been synthesized by oxygen-assisted microwave plasma chemical vapor deposition (MPCVD). We have succeeded in growth of vertically aligned MWCNTs up to 2.7 mm in height for 150 min. The effect of $O_2$ and water vapour on growth rate was systematically investigated. In the case of $O_2$ gas, the growth rate was ${\sim}22{\mu}m/min$, which is outstanding growth rate comparing with those of conventional thermal CVD (TCVD). Scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and Raman spectroscopy were used to analyze the CNT morphology, composition and growth mechanism. The role of $O_2$ gas during the CNT growth was discussed on.

본 연구에서는 철(Fe)을 촉매금속으로 사용하고 마이크로웨이브 플라즈마 화학기상증착법(microwave plasma CVD)을 이용하여 얇은 다중벽 탄소나노튜브를 합성하였다. 촉매금속으로 사용된 철은 직류 마그네트론 스퍼터를 사용하여 증착하였으며, 탄소나노튜브의 합성에는 플라즈마 공급원인 수소($H_2$), 탄소 공급원인 메탄($CH_4$)과 함께 미량의 산소($O_2$) 또는 아르곤(Ar)과 함께 물을 수증기의 형태로 사용하였다. 산소 또는 수증기의 추가에 따른 탄소나노튜브의 성장률의 변화를 주사전자현미경으로 조사하였으며, 결정구조를 투과전자 현미경을 통해 관찰하였다. 또한 라만 분광법을 이용하여 추가 주입 기체의 종류에 따른 탄소나노튜브의 결정성의 변화를 분석하였다. 실험결과, 산소를 추가로 주입하였을 때 성장률이 가장 컸고 결정성도 개선되는 것을 확인하였다. 최종적으로 150 분 동안 합성하여 기판 위에 2.7 mm 이상의 수직 정렬된 얇은 다중벽 탄소나노튜브(thin-multiwalled CNTs)를 합성할 수 있었다.

Keywords

References

  1. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes" Imperial College, London (1998). Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001) https://doi.org/10.1103/PhysRevLett.86.1118
  2. D. Ferrer, T. Tanii, I. Matsuys, G. Zhong, S. Okamoto, and H. Kawarada, Appl. Phys. Lett., 88, 033116 (2006) https://doi.org/10.1063/1.2165205
  3. Seung Youb Lee, Dong Heon Ryu, Jun Yong Hong, Min Hyeng Yeom, Ji Hoon Yang, Won Chel Choi, Myeng Hoi Kwon, and Chong-Yun Park, J. Korean. Vac. Soc., 16, 291 (2007) https://doi.org/10.5757/JKVS.2007.16.4.291
  4. Ali Javey, Jing Guom Qian Wang, Mark Lundstrom, and Hongjie Dai, Nature, 424, 654 (2003) https://doi.org/10.1038/nature01797
  5. Qing Cao, Ming-Gang Xia, Moonsub Shim, and A. Rogers, Adv. Funct. Mater., 16, 2355 (2006) https://doi.org/10.1002/adfm.200600539
  6. Ji Ung Lee, Appl. Phys. Lett., 87, 073101 (2005) https://doi.org/10.1063/1.2010598
  7. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science, 287, 622 (2000) https://doi.org/10.1126/science.287.5453.622
  8. J. S. Sakamoto and B. Dunn, J. Electrochem. Soc., 149, A26 (2002) https://doi.org/10.1149/1.1425791
  9. H. M. Christen, A. A. Puretzky, H. Cui, K. Belay, P. H. Fleming, D. B. Geohegan, and D. H. Lowndes, Nano Lett., 4, 1939 (2004) https://doi.org/10.1021/nl048856f
  10. Gyula Eres, A. A. Puretzky, D. B. Geohegan, and H. Cui, Appl. Phys. Lett., 84, 1759 (2004) https://doi.org/10.1063/1.1668325
  11. Kenji Hata, Don N. Futaba, Kohei Mizuno, Tatsunori Namai, Motoo Yumura, and Sumio Iijima, Science, 306, 1362 (2004) https://doi.org/10.1126/science.1104962
  12. Don N. Futaba, Kenji Hata, Takeo Yamada, Kohei Mizuno, Motoo Yumura, and Sumio Iijima, Phys. Rev. Lett., 95, 056104 (2005) https://doi.org/10.1103/PhysRevLett.95.056104
  13. Byung Hee Hong, Ju Young Lee, Tobias Beetz, Yimei Zhu, Philip Kim, and Kwang S. Kim, J. Am. Chem. Soc., 127, 15336 (2005) https://doi.org/10.1021/ja054454d
  14. Guangyu Zhang, David Mann, Li Zhang, Ali Javey, Yiming Li, Erhan Yenilmez, Qian Wang, James P. McVittie, Yoshio Nishi, James Gibbons, and Hongjie Dai, Proc. Natl Acad. Sci., 102, 16141 (2005) https://doi.org/10.1073/pnas.0507064102
  15. Anastasios John Hart and Alexander H. Slocum, J. Phys. Chem. B., 110 8250 (2006) https://doi.org/10.1021/jp055498b
  16. YeoHeung Yun, Vesselin Shanov, Yi Tu, Srinivas Subramaniam, and Mark J. Schulz, J. Phys. Chem. B., 110, 23920 (2006) https://doi.org/10.1021/jp057171g
  17. Guofang Zhong, Takayuki Iwasaki, John Robertson, and Hiroshi Kawarada, J. Phys. Chem. B., 111, 1907 (2007) https://doi.org/10.1021/jp067776s
  18. Teresa de los Arcos, Michael Gunnar Garnier, Jin Won Seo, Peter Oelhafen, Verena Thommen, and Daniel Mathys, J. Phys. Chem. B., 108, 7728 (2004) https://doi.org/10.1021/jp049495v
  19. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett., 86, 1118 (2001) https://doi.org/10.1103/PhysRevLett.86.1118
  20. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, J. Phys. Chem. C., 111, 17887 (2007) https://doi.org/10.1021/jp071378n
  21. W. Song, W. C. Choi, C. Jeon, D. H. Ryu, S. Y. Lee, Y. S. Shin, and C.-Y. Park, J. Korean. Vac. Soc., 16, 377 (2007) https://doi.org/10.5757/JKVS.2007.16.5.377
  22. R. S. Wagner and W. C. Ellis, Appl. Phys. Letts., 4, 8 (1964)
  23. YeoHeung Yun, Vesselin Shanov, Yi Tu, and Srinivas Subramaniam, and Mark J. Schulz, J. Phys. Chem. B., 110, 23920 (2006) https://doi.org/10.1021/jp057171g

Cited by

  1. Ethical Issues in Nanomaterials Technology and Relevant Policy Recommendations vol.19, pp.6, 2010, https://doi.org/10.5757/JKVS.2010.19.6.397
  2. Controlling the Diameter Size of Carbon Nanofilaments by the Cyclic on/off Modulation of C2H2/H2/SF6Flow in a Thermal Chemical Vapor Deposition System vol.18, pp.6, 2009, https://doi.org/10.5757/JKVS.2009.18.6.481
  3. Synthesis of High-Quality Single-Walled Carbon Nanotube Fibers by Vertical CVD vol.19, pp.5, 2010, https://doi.org/10.5757/JKVS.2010.19.5.377
  4. Growth of vertical carbon nanotubes according to the Al2O3 buffer layer preparation vol.19, pp.5, 2013, https://doi.org/10.1016/j.jiec.2013.01.016