Q-factor Improvements of WDM Signals using Optical Transmission Link with Dispersion Management and OPC

분산 제어와 OPC를 갖는 광전송 링크를 이용한 WDM 신호의 Q-factor 개선

  • Lee, Seong-Real (Div. of Marine Electro. & Comm. Eng., Mokpo National Maritime University)
  • 이성렬 (목포해양대학교 해양전자통신공학부)
  • Received : 2008.11.21
  • Accepted : 2009.02.28
  • Published : 2009.02.28

Abstract

New optical transmission link techniques improving performance of WDM channels, each channel have bit rate of 40 Gbps, are proposed. The proposed optical link configuration consist of optical phase conjugator (OPC) placed at middle of total transmission length, and dispersion management (DM) as a role of compensating dispersion cumulated in transmission line. It is confirmed that Q-factor of total channels are improved by combining OPC and DM in optical transmission link as a result of following fact; DM not only mitigate the cumulated dispersion in total transmission line but also help OPC to compensate optical nonlinearities. And, it is confirmed that the improvement of Q-factor of overall WDM channels depends on net residual dispersion (NRD) of optical link.

채널 전송률이 40 Gbps인 WDM 채널들의 성능을 개선시키는 새로운 광전송 링크 기술을 제안하였다. 제안된 광전송 링크는 전체 전송로 중간에 광 위상 공액기 (optical phase conjugator)를 두고 전송로에서 축적된 분산은 분산 제어 (DM; dispersion management)을 통해 보상하는 구조이다. DM이 OPC와 결합하면 DM을 통해 전송 링크 전체에서 축적된 분산량을 줄여줌과 동시에 OPC에 의한 비선형성 보상의 정도를 더욱 좋게 하여 결과적으로 모든 채널들의 Q-factor가 크게 개선되는 것을 확인하였다. 그리고 모든 WDM 채널들의 Q-factor 개선은 광전송 링크의 전체 잉여 분산 (NRD; net residual dispersion)에 크게 의존한다는 것을 알 수 있었다.

Keywords

References

  1. A. R. Chraplyvy, "Limitations on lightwave communications imposed by optical-fiber nonlinearities", J. Lightwave Technol., vol. LT-8, no. 10, pp 1548-1557, 1990.
  2. J. Nagel, "Fiber issues for system deployment," in Proc. Optical FiberCommunication'2001, Anaheim, CA, 2001, Paper TuDl.
  3. A. Farbert, C. Scheerer, J.-P. Elbers, C. Glingener, and G. Fischer, "Optimized dispersion management scheme for long-haul optical communication systems," Electron. Lett., vol. 35, no. 21, pp. 1865-1866, Oct. 1999. https://doi.org/10.1049/el:19991237
  4. S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation", J. Lightwave Technol., vol. LT-14, no. 3, pp 243-248, 1996.
  5. I. Brener, et al., "Cancellation of all Kerr nonlinearities in long fiber spans using a LiNb03 conjugator and Raman amplification," presented at the Opt. Fiber Comm. Conf. (OFC 2000), Paper PD33, 2000.
  6. 이성렬, "WDM 채널수에 따른 최적의 OPC 위치 및 광섬유 분산 계수", 한국항행학회논문지 제11권 2호, pp. 177-186, 2007.
  7. G. P. Agrawal, Fiber-optic communication systems, John Wiley & Sons, Inc., 2002.
  8. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2001.
  9. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, "Long-haul DWDM transmission systems employing optical phase conjugation", IEEE J. of Selected Topics in Quantum Electro., vol. 12, no. 4, pp. 505-520, 2006.
  10. R. J. Nuyts, L. D. Tzeng, O. Mizuhara, and P. Gallion, "Effects of transmitter speed and receiver bandwidth on the eye margin performance of a 10-Gb/s optical fiber transmission system", IEEE Photon. Technol. Lett., vol. 9, pp. 532-535, 1997. https://doi.org/10.1109/68.559412
  11. H. Kim and A. H. Gnauck, "Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise," IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 320-322, 2003. https://doi.org/10.1109/LPT.2002.807921