DOI QR코드

DOI QR Code

Experimental Study on Characteristics of Synergistic Effect of Fuel Mixing on Number Density and Size of Soot in Ethylene-base Counterflow Diffusion Flames by Laser Techniques

  • Published : 2009.05.31

Abstract

The effect of fuel mixing on soot structure with methane, ethane, and propane to ethylene-base counterflow diffusion flames has been investigated by measuring the volume fraction, number density, and particle size of soot by adopting the light extinction/scattering techniques. The experimental result showed that the mixing of ethane and propane in ethylene diffusion flame increased soot volume fraction while the mixing of methane decreased. As compare to the ethylene-base flame, the diameters of soot particles for mixture flames are slightly smaller. While the soot number densities for the mixture flames are much higher. Thus, the increase in the soot volume fraction can be attributed to the appreciably increased soot number density by the fuel mixing.

Keywords

References

  1. D. Lack, B. Lerner, C. Granier, T. Baynard, E. Lovejoy, P. Massoli, A. R. Ravishankara, and E. Williams, "Light absorbing carbon emissions from commercial shipping", Geophysical. Res. Lett., 35, L13815, doi : 10. 1029 /2008 GL033906, 2008 https://doi.org/10.1029/2008GL033906
  2. I. Glassman, "Soot formation in combustion processes", Combust. Inst. Vol. 22, pp. 295-311, 1988 https://doi.org/10.1016/S0082-0784(89)80036-0
  3. M. Frenklach, D. W. Clary, C. William, J. R. Gardiner, and E. S. Stephen, "Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene", 20th Proc. Combust. Inst., pp. 887-901, 1984
  4. M.D. Smooke , C.S. Mcenally , LD. Pfefferle , RJ. Hall , MB Colket, "Computational and experimental study of soot formation in a coflow laminar diffusion flame", Combust. Flame, Vol. 117, pp. 117-139, 1999 https://doi.org/10.1016/S0010-2180(98)00096-0
  5. K.C. Oh and H, D. Shin, "The effect of oxygen and carbon dioxide concentration on soot formation in non-premixed flames", Fuel, Vol. 85, pp. 615-624, 2006 https://doi.org/10.1016/j.fuel.2005.08.018
  6. B. Zhao, Z. Yang, Z. Li, M.V. Johnston, H. Wang, "Particle size distribution function of incipient soot in laminar premixed ethylene flames: effect of flame temperature", Proc. Combust. Inst., Vol. 30: pp. 1441-1448, 2005 https://doi.org/10.1016/j.proci.2004.08.104
  7. CS. McEnally and LD. Pfefferle "The effects of dimethyl ether and ethanol on benzene and soot formation in ethylene nonpremixed flames", Proc. Combust. Inst., Vol. 31, pp. 603-610, 2007 https://doi.org/10.1016/j.proci.2006.07.005
  8. KT. Kang, JY. Hwang, SH. Chung, W. Lee, "Soot zone structure and sooting limit in diffusion flames: comparison of counterflow and Co-flow flames", Combust.Flame, Vol. 109, pp. 266-281, 1997 https://doi.org/10.1016/S0010-2180(96)00163-0
  9. JA. Miller and CF. Melius, "Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels", Combust. Flame, Vol. 91, pp. 21-39, 1992 https://doi.org/10.1016/0010-2180(92)90124-8
  10. A. D'Anna, A. Violi, A. D'Alessio, "Modeling the rich combustion of aliphatic hydrocarbons", Combust. Flame, Vol. 121, pp. 418-429, 2000 https://doi.org/10.1016/S0010-2180(99)00163-7
  11. NM. Marinov, WJ. Pitz, CK. Westbrook, MJ. Castaldi,SM. Senkan, "Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames." Combust. Sci. Tech., Vol. 116/117, pp. 211-287, 1996 https://doi.org/10.1080/00102209608935550
  12. S. S. Yoon, S. M. Lee, S. H. Chung, "Effect of mixing methane, ethane, propane, and propene on the synergistic effect of PAH and soot formation in ethylene-base counterflow diffusion flames", Proc. Combust.Inst., Vol. 30, pp. 1417-1424, 2005 https://doi.org/10.1016/j.proci.2004.08.038
  13. NM. Marinov, MJ. Castaldi, CF. Melius , W. Tsang, "Aromatic and polycyckic aromatic hydrocarbon formation in a premixed propane flame", Combust. Sci. Tech., Vol. 128, pp. 295-342, 1997 https://doi.org/10.1080/00102209708935714
  14. Y. Hidaka, K. Sato, H. Hoshikawa, T. Nishimori, R. Takahashi, H. Tanaka, K. Inami, N. Ito, "Shock-tube and modeling study of ethane pyrolysis and oxidation", Combust. Flame, Vol. 120, pp. 245-264, 2000 https://doi.org/10.1016/S0010-2180(99)00102-9
  15. RA. Dobbins, RJ. Santoro, HG. Semerjian ,"Interpretation of optical measurement of soot in flames", Prog. Astronaut. Aeronaut., Vol. 92, pp. 208-237, 1984
  16. RA. Dobbins, RJ. Santoro, HG. Semerjian, "Analysis of light scattering form soot using optical cross sections for aggregates." 23rd Proc. Combust. Inst., pp. 1525-1532, 1990
  17. CF. Bohren, DR. Huffman, "Absorption and scattering of light by small particles", John Willey & Sons New York, 1983
  18. RR. Rudder, DR. Bach, "Rayleigh scattering of ruby-laser light bym neutral gases." J The Optical Society of America, Vol. 58, pp. 1260-1266, 1968 https://doi.org/10.1364/JOSA.58.001260
  19. MP. Bogaard, AD. Buckingham, RK. Pierens, AH. White, "Rayleigh scattering depolarization ratio and molecular polarizability anisotropy for gases." J. Chem. Society, Faraday Transactions, Vol. 74, pp. 3008-3015, 1978 https://doi.org/10.1039/f19787403008

Cited by

  1. Effects of various densities and velocities on gaseous hydrocarbon fuel on near nozzle flow field under different laminar coflow diffusion flames vol.40, pp.2, 2016, https://doi.org/10.5916/jkosme.2016.40.2.102
  2. Effects of Various Fuels on Combustion and Emission Characteristics of a Four-Stroke Dual-Fuel Marine Engine vol.9, pp.10, 2009, https://doi.org/10.3390/jmse9101072