DOI QR코드

DOI QR Code

Cobalt Chloride-Induced Downregulation of Puromycin-Sensitive Aminopeptidase Suppresses the Migration and Invasion of PC-3 Cells

  • Lee, Suk-Hee (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University) ;
  • Kim, Hwan-Gyu (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University)
  • Published : 2009.05.31

Abstract

Cobalt chloride ($CoCl_2$) treatment of cells in vitro has been shown to induce cellular changes that are similar to those seen following hypoxia. To identify genes that are differentially expressed in response to treatment with $CoCl_2$, we compared the mRNA expression profiles of PC-3 cells that were treated with $CoCl_2$ with those of untreated PC-3 cells, using specific arbitrary primers and two anchored oligo(dT) primers provided in the ACP-based GeneFishing kits. The results of this study demonstrated that the puromycin-sensitive aminopeptidase (PSA) gene was down regulated in PC-3 cells that were treated with $CoCl_2$. This downregulation of PSA expression, in turn, suppressed the proliferation, migration, and invasion of PC-3 cells, as well as the secretion and expression of matrix metalloproteinase-9 (MMP-9).

Keywords

References

  1. Akada, T., T. Yamazaki, H. Miyashita, O. Niizeki, M. Abe, A. Sato, S. Satomi, and Y. Sato. 2002. Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) is involved in the activation of endothelial integrins. J. Cell Physiol. 193: 253-262 https://doi.org/10.1002/jcp.10169
  2. Bergers, G. and L. E. Benjamin. 2003. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3: 401-410 https://doi.org/10.1038/nrc1093
  3. Bhagwat, S. V., J. Lahdenranta, R. Giordano, W. Arap, R. Pasqualini, and L. H. Shapiro. 2001. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97: 652-659 https://doi.org/10.1182/blood.V97.3.652
  4. Brahimi-Horn, C., E. Berra, and J. Pouyssegur. 2001. Hypoxia: The tumor''s gateway to progression along the angiogenic pathway. Trends Cell Biol. 11: S32-S36 https://doi.org/10.1016/S0962-8924(01)02126-2
  5. Bunn, H. F. and R. O. Poyton. 1996. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76: 839-885 https://doi.org/10.1152/physrev.1996.76.3.839
  6. Caudroy, S., M. Polette, B. Nawrocki-Raby, J. Cao, B. P. Toole, S. Zucker, and P. Birembaut. 2002. EMMPRIN-mediated MMP regulation in tumor and endothelial cells. Clin. Exp. Metastasis 19: 697-702 https://doi.org/10.1023/A:1021350718226
  7. Constam, D. B., A. R. Tobler, A. Rensing-Ehl, I. Kemler, L. B. Hersh, and A. Fontana. 1995. Puromycin-sensitive aminopeptidase. Sequence analysis, expression, and functional characterization. J. Biol. Chem. 270: 26931-26939 https://doi.org/10.1074/jbc.270.45.26931
  8. Du, R., K. V. Lu, C. Petritsch, P. Liu, R. Ganss, E. Passegue, et al. 2008. HIF1alpha induces the recruitment of bone marrowderived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13: 206-220 https://doi.org/10.1016/j.ccr.2008.01.034
  9. Egeblad, E. and Z. Werb. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2: 161-174 https://doi.org/10.1038/nrc745
  10. Folkman, J. and M. Klagsbrun. 1987. Angiogenic factors. Science 235: 442-447 https://doi.org/10.1126/science.2432664
  11. Folkman, J. and Y. Shing. 1992. Angiogenesis. J. Biol. Chem. 267: 10931-10934
  12. Genbacev, O., Y. Zhou, J. W. Ludlow, and S. J. Fisher. 1997. Regulation of human placental development by oxygen tension. Science 277: 1669-1672 https://doi.org/10.1126/science.277.5332.1669
  13. Griffith, E. C., Z. Su, B. E. Turk, S. Chen, Y. H. Chang, and J. O. Liu. 1997. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem. Biol. 4: 461-471 https://doi.org/10.1016/S1074-5521(97)90198-8
  14. Gupta, G. P. and J. Massague. 2006. Cancer metastasis: Building a framework. Cell 127: 679-695 https://doi.org/10.1016/j.cell.2006.11.001
  15. Hersh, L. B., T. E. Smith, and J. F. McKelvy. 1980. Cleavage of endorphins to des-Tyr endorphins by homogeneous bovine brain aminopeptidase. Nature 286: 160-162 https://doi.org/10.1038/286160a0
  16. Kakuta, H., A. Tanatani, K. Nagasawa, and Y. Hashimoto. 2003. Specific nonpeptide inhibitors of puromycin-sensitive aminopeptidase with a 2, 4 (1H, 3H)-quinazolinedione skeleton. Chem. Pharm. Bull. 51: 1273-1282 https://doi.org/10.1248/cpb.51.1273
  17. Klagsbrun, M. and P. A. D''Amore. 1991. Regulators of angiogenesis. Annu. Rev. Physiol. 53: 217-239 https://doi.org/10.1146/annurev.ph.53.030191.001245
  18. Komoda, M., H. Kakuta, H. Takahashi, Y. Fujimoto, S. Kadoya, F. Kato, and Y. Hashimoto. 2001. Specific inhibitor of puromycin-sensitive aminopeptidase with a homophthalimide skeleton: Identification of the target molecule and a structureactivity relationship study. Bioorg. Med. Chem. 9: 121-131 https://doi.org/10.1016/S0968-0896(00)00231-5
  19. Lockhart, D. J. and E. A. Winzeler. 2000. Genomics, gene expression and DNA arrays. Nature 405: 827-836 https://doi.org/10.1038/35015701
  20. Marchio, S., J. Lahdenranta, R. O. Schlingemann, D. Valdembri, P. Wesseling, M. A. Arap, et al. 2004. Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell 5: 151-162 https://doi.org/10.1016/S1535-6108(04)00025-X
  21. Miyashita, H., T. Yamazaki, T. Akada, O. Niizeki, M. Ogawa, S. Nishikawa, and Y. Sato. 2002. A mouse orthologue of puromycin-insensitive leucyl-specific aminopeptidase is expressed in endothelial cells and plays an important role in angiogenesis. Blood 99: 3241-3249 https://doi.org/10.1182/blood.V99.9.3241
  22. Saric, T., C. I. Graef, and A. L. Goldberg. 2004. Pathway for degradation of peptides generated by proteasomes: A key role for thimet oligopeptidase and other metallopeptidases. J. Biol. Chem. 279: 46723-46732 https://doi.org/10.1074/jbc.M406537200
  23. Sato, Y. 2004. Role of aminopeptidase in angiogenesis. Biol. Pharm. Bull. 27: 772-776 https://doi.org/10.1248/bpb.27.772
  24. Schugart, R. C., A. Friedman, R. Zhao, and C. K. Sen. 2008. Wound angiogenesis as a function of tissue oxygen tension: A mathematical model. Proc. Natl. Acad. Sci. U.S.A. 105: 2628-2633 https://doi.org/10.1073/pnas.0711642105
  25. Stoltze, L., M. Schirle, G. Schwarz, C. Schroter, M. W. Thompson, L. B. Hersh, et al. 2000. Two new proteases in the MHC class I processing pathway. Nat. Immunol. 1: 413-418 https://doi.org/10.1038/80852
  26. Su, Y., J. Zhang, and R. Xiu. 2006. Down-regulation of hepatocyte growth factor mRNA in rat cardiac myocytes under hypoxia mimicked by cobalt chloride. Clin. Hemorheol. Microcirc. 34: 201-206
  27. Yamazaki, T., T. Akada, O. Niizeki, T. Suzuki, H. Miyashita, and Y. Sato. 2004. Puromycin-insensitive leucyl-specific aminopeptidase (PILSAP) binds and catalyzes PDK1, allowing VEGF-stimulated activation of S6K for endothelial cell proliferation and angiogenesis. Blood 104: 2345-2352 https://doi.org/10.1182/blood-2003-12-4260
  28. Zhao, P., X. G. Li, M. Yang, Q. Shao, D. Wang, S. Liu, et al. 2008. Hypoxia suppresses the production of MMP-9 by human monocyte-derived dendritic cells and requires activation of adenosine receptor A2b via cAMP/PKA signaling pathway. Mol. Immunol. 45: 2187-2195 https://doi.org/10.1016/j.molimm.2007.12.002

Cited by

  1. Cobalt Chloride-Induced Down-Regulation of Puromycin-Sensitive Aminopeptidase Involved in Apoptosis of PC-3 Cells vol.20, pp.7, 2009, https://doi.org/10.5352/jls.2010.20.7.991
  2. Dictyostelium puromycin-sensitive aminopeptidase A is a nucleoplasmic nucleomorphin-binding protein that relocates to the cytoplasm during mitosis vol.136, pp.6, 2009, https://doi.org/10.1007/s00418-011-0873-4
  3. Recent progress in histochemistry and cell biology vol.137, pp.4, 2012, https://doi.org/10.1007/s00418-012-0933-4
  4. Positioning of aminopeptidase inhibitors in next generation cancer therapy vol.46, pp.4, 2009, https://doi.org/10.1007/s00726-013-1648-0