In Situ Microfluidic Synthesis of Monodisperse PEG Microspheres

  • Choi, Chang-Hyung (Department of Chemical Engineering, Chungnam National University) ;
  • Jung, Jae-Hoon (Department of Chemical Engineering, Chungnam National University) ;
  • Hwang, Taek-Sung (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • Published : 2009.03.25

Abstract

This study presents a microfluidic method for the production of monodisperse poly(ethylene glycol) (PEG) microspheres using continuous droplet formation and in situ photopolymerization in microfluidic devices. We investigated the flow patterns for the stable formation of droplets using capillary number and the flow rate of the hexade-cane phase. Under the stable region, the resulting microspheres showed narrow size distribution having a coefficient of variation (CV) of below 1.8%. The size of microspheres ($45{\sim}95{\mu}m$) could be easily controlled by changing the interfacial tension between the two immiscible phases and the flow rates of the dispersed or continuous phase.

Keywords

References

  1. H. Jung, K. Lee, S. E. Shim, S. Yang, J. M. Lee, H. Lee, and S. Choe, Macromol. Res., 12, 512 (2004) https://doi.org/10.1007/BF03218436
  2. I. W. Cheong, J. S. Shin, J. H. Kim, and S. J. Lee, Macromol. Res., 12, 225 (2004) https://doi.org/10.1007/BF03218392
  3. D. Dendukuri, T. A. Hatton, and P. S. Doyle, Langmuir, 23, 4669 (2007) https://doi.org/10.1021/la062512i
  4. E. J. Tull, P. N. Bartlett, and K. R. Ryan, Langmuir, 23, 7859 (2007) https://doi.org/10.1021/la0700974
  5. C. H. Choi, J. H. Jung, Y. W. Rhee, D. P. Kim, S. E. Shim, and C. S. Lee, Biomed. Microdevices, 9, 855 (2007) https://doi.org/10.1007/s10544-007-9098-7
  6. J. W. Lee, J. U. Ha, S. Choe, C. S. Lee, and S. E. Shim, J. Colloid Interf. Sci., 298, 663 (2006) https://doi.org/10.1016/j.jcis.2006.01.001
  7. J. S. Song, F. Tronc, and M. A. Winnik, J. Am. Chem. Soc., 126, 6562 (2004) https://doi.org/10.1021/ja048862d
  8. Z. F. Liu, H. N. Xiao, and N. Wiseman, J. Appl. Polym. Sci., 76, 1129 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000516)76:7<1129::AID-APP17>3.0.CO;2-O
  9. W. H. Ming, J. Zhao, X. L. Lu, C. C. Wang, and S. K. Fu, Macromolecules, 29, 7678 (1996) https://doi.org/10.1021/ma951134d
  10. C. Charcosset and H. Fessi, Rev. Chem. Eng., 21, 1 (2005) https://doi.org/10.1515/REVCE.2005.21.1.1
  11. N. C. Christov, K. D. Danov, D. K. Danova, and P. A. Kralchevsky, Langmuir, 24, 1397 (2008) https://doi.org/10.1021/la702306f
  12. L. Capretto, S. Mazzitelli, C. Balestra, A. Tosi, and C. Nastruzzi, Lab Chip, 8, 617 (2008) https://doi.org/10.1039/b714876c
  13. D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, Lab Chip, 7, 818 (2007) https://doi.org/10.1039/b703457a
  14. B. G. De Geest, J. P. Urbanski, T. Thorsen, J. Demeester, and S. C. De Smedt, Langmuir, 21, 10275 (2005) https://doi.org/10.1021/la051527y
  15. M. Schindler and A. Ajdari, Phys. Rev. Lett., 100, 044501 (2008) https://doi.org/10.1103/PhysRevLett.100.044501
  16. W. H. Tan and S. Takeuchi, Adv. Mater., 19, 2696 (2007) https://doi.org/10.1002/adma.200700433
  17. Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, J. Am. Chem. Soc., 127, 8058 (2005) https://doi.org/10.1021/ja042494w
  18. S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides, Angew. Chem. Int. Edit., 44, 724 (2005) https://doi.org/10.1002/anie.200462226
  19. C. J. Cheng, L. Y. Chu, P. W. Ren, H. Zhang, and L. Hu, J. Colloid Interf. Sci., 313, 383 (2007) https://doi.org/10.1016/j.jcis.2007.05.004
  20. M. B. Mellott, K. Searcy, and M. V. Pishko, Biomaterials, 22, 929 (2001) https://doi.org/10.1016/S0142-9612(00)00258-1