The Development of Rubrics to Assess Scientific Argumentation

과학적 논증과정 평가를 위한 루브릭 개발

  • Published : 2009.04.30

Abstract

The purpose of this study was to develop a rubric for assessing students' scientific argumentation. Through the analysis of relevant literature related to argument in science education for developing rubric, the procedure in development and the category in assessment for rubric were elicited. According to the general procedure in developing rubric, the standard for evaluating the argumentation derived three categories such as a form, contents, and attitude. The form category was further segmented into sub-functions composition, claim, ground, and conclusion in the whole. The category for contents was segmented into sub-functions understanding, credibility, and inference. And the category for attitude was set to sub-functions participatory level and openness. The standard for evaluating sub-functions in each of the categories formed in this way was minutely suggested with five stages. The rubric, which was developed on the basis of literature, was inspected through a regular seminar in one expert in science education and fellow researchers. The rubric, which was developed in the early days, was again modified by being verified on problem and improvement matter after being entrusted to four experts in scientific education. And, the finally-completed rubric indicated to be high with 0.96 in the content validity index by being verified the validity by the four experts in science education. The developed rubric will lead to being able to increase the understanding about demonstration in students, and to being available for being utilized as the criteria for developing the argumentation process program and for evaluating the argumentation activity.

이 연구의 목적은 학생들의 과학적 논증과정 평가를 위한 루브릭을 개발하는 것이다. 루브릭의 개발을 위해 과학교육에서의 논증과정과 관련된 문헌의 분석을 통해 루브릭의 개발 절차및 평가의 범주를 도출하였다. 루브릭 개발의 일반적인 절차를 따라서 논증과정 평가의 기준을 형식, 내용, 태도의 세 가지 범주를 문헌을 통해 도출하였다. 형식의 범주에는 전체의 구성, 주장, 근거, 결론의 하위 기능으로 세분화하였고, 내용의 범주에는 이해, 신빙성, 추론으로 하위 기능을 세분하였으며, 태도의 범주에는 참여도와 개방성을 하위 기능으로 정하였다. 이렇게 구성된 각각의 하위기능의 평가에 대한 기준을 구체적인 5단계로 제시하였다. 문헌 연구를 토대로 개발된 평가 루브릭은 과학 교육 전문가 1인과 동료 연구자들의 정기적인 세미나를 통해 점검 받았다. 개발된 초기의 루브릭은 과학교육 전문가 4인에게 의뢰하여 문제점 및 개선점에 대한 검증을 받아 다시 수정되었으며, 최종 완성된 루브릭은 과학교육 전문가 4인에게 타당도를 검증받아 내용타당도지수 0.96으로 높게 나타났다. 개발된 루브릭을 통해 학생들의 논증과정에 대한 이해를 높일 수있고, 논증과정 프로그램 개발과 논증과정 평가를 위한 기준으로 활용이 가능할 것이다.

Keywords

References

  1. 강순민, 곽경화, 남정희 (2006). 논의 과정을 강조한 교수 학습 전략이 중학생들의 인지발달, 과학개념 이해, 과학관련 태도 및 논의 과정에 미치는 영향. 한국과학교육학회, 26(3), 450-461
  2. 이범홍 (1998). 토의 토론 학습과 중등학교 과학 교육. 1997년도 교과교육공동연구 결과보고서 (RR97-Ⅱ-6), 서울: 한국 학술 진흥 재단
  3. Herman, J. I., Aschbacher, P. R., & Winters, I. (1992). A practical guide to alternative assessment. Alexandria, VA: Association for Supervision and Curriculum Development. 김경자(역) (2000). 수행평가 과제 제작의 원리와 실재. 서울: 이화여자대학교 출판부
  4. Andrews, R., Costello, P., & Clarke, S. (1993). Improving the quality of argument 5-16: Final Report. Hull, UK: Esmee Fairbairn Charitable Trust/University of Hull
  5. Arter, J. (2000). Rubrics, scoring guides, and performance criteria: Classroom tools for assessing and improving student learning. paper presented at the Annual Meeting of American Educational Research Association. ERIC Document Reproduction Service Mo. ED446100
  6. Arter, J., & McTighe, J. (2001). Scoring rubrics in the classroom: Using performance criteria for assessing and improving student performance. Thousand Oaks, CA: Corwin Press
  7. Astin, A. W. (1993). Assessment for excellence: The philosophy and practice of assessment and evaluation in higher education. New York: Macmillan
  8. Aufscjnaiter, C. V., Erduran, S., Osborne., J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131 https://doi.org/10.1002/tea.20213
  9. Banta, T. W., Lund, J. P., Black, K. E., & Oblander, F. W. (1996). Assessment in practice: Putting principles to work on college campuses. San Francisco: Jossey-Bass
  10. Bazerman, C. (1988). Shaping written knowledge: The genre and activity of the experimental article in science. Madison: University of Wisconsin Press
  11. Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning for the Web with KIE. International Journal of Science Education, 22(8), 797-817 https://doi.org/10.1080/095006900412284
  12. Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92(3), 473-498 https://doi.org/10.1002/sce.20278
  13. Carr, J.F., & Harris, D.E. (2001). Succeeding with standards: Linking curriculum, assessment, and action planning. Alexandria, VA: Association for Supervision & Curriculum Development
  14. Chan, C. K. K. (2001). Peer collaboration and discourse patterns in learning from incompatible information. Instructional Science, 29, 443 479 https://doi.org/10.1023/A:1012099909179
  15. Chinn, C. A., & Anderson, R. G. (2000). The structure of discussions that promote reasoning. Teachers College Record, 100(2), 315-368
  16. Clark, D., & Sampson, V. (2006). Personally -seeded discussions to scaffold online argumentation. International Journal of Science Education, 29(3), 253-277 https://doi.org/10.1080/09500690600560944
  17. Davis, L. (1992). Instrument review: Getting the most from your panel of experts. Applied Nursing Research, 5(4), 194-197 https://doi.org/10.1016/S0897-1897(05)80008-4
  18. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312 https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  19. Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915 933 https://doi.org/10.1002/sce.20012
  20. Felton, M. K., & Herko, S. (2004). From dialogue to two-sided argument: Scaffolding adolescents' perspective writing. Journal of Adolescent & Adult Literacy, 47(8), 672-683
  21. Felton, M., & Kuhn, D. (2001). The development of argumentative discourse skill. Discourse Processes, 32(2&3), 135-153 https://doi.org/10.1207/S15326950DP3202&3_03
  22. Goodrich, H. (1996). Understanding rubrics. Educational Leadership, 54(4), 14-17
  23. Hogan, K., Nastasi, B. K., & Pressley, M. (2000). Discourse patterns and collaborative scientific reasoning in peer and teacherguided discussion. Cognition and Instruction, 17(4), 379-432 https://doi.org/10.1207/S1532690XCI1704_2
  24. Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students and scientists' reasoning about conclusions. Journal of Research in Science Teaching. 38(6). 663-687 https://doi.org/10.1002/tea.1025
  25. Jimenez-Aleixandre, M. P., Rodrigueze, A. B., & Duschl, R. A. (2000). "Doing the Lesson" or "Doing Science": Argument in high school genetics. London: John Wiley & Sons
  26. Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students use of evidence in writing. Science Education, 86, 314-342 https://doi.org/10.1002/sce.10024
  27. Kelly, G. J., & Bazerman, C. (2003). How students argue scientific claims: a rhetoricalsemantic analysis. Applied Linguistics, 24(1), 28-55 https://doi.org/10.1093/applin/24.1.28
  28. Kanselaar, G., Erkens, G., Andriessne, J., Prangsma, M., Veerman, A., & Jaspers, J. (2002). Designing argumentation tools fro collaborative learning. In P. A. Kirschner, S. J. Buckingham-Shum & C. S. Carr (Eds.), Visualising argumentation: Software Tools for Collaborative and Educational Sense-making. (pp. 51-73). London: Springer
  29. Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337 https://doi.org/10.1002/sce.3730770306
  30. Lawson, A. E. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387-1408 https://doi.org/10.1080/0950069032000052117
  31. Maloney, J., & Simon, S. (2006). Mapping children's discussions of evidence in science to assess collaboration and argumentation. International Journal of Science Education, 28(15), 1817-1841 https://doi.org/10.1080/09500690600855419
  32. Marttunen, M. (1994). Assessing argumentation skills among finish universitym students. Learning and Instruction, 4, 175-191 https://doi.org/10.1016/0959-4752(94)90010-8
  33. McCann, T. M. (1989). Student argumentative writing: Knowledge and ability at three grade levels. Research in the Teaching of English, 23(1), 62-76
  34. McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Science, 15(2), 153-191 https://doi.org/10.1207/s15327809jls1502_1
  35. McNeill, K. L., & Krajcik, J. (2007). Middle school students' use of appropriate and inappropriate evidence in writing scientific explanations. In Lovett, M. & Shah, P. (Eds.) Thinking with data: The proceedings of the 33rd Carnegie symposium on cognition. Mahwah, NJ: Lawrence Erlbaum Associate, Inc
  36. Mercer, N., Wegerif, R., & Dawes, L. (1999). Children's talk and the development of reasoning in the classroom. British Educational Research Journal, 25(1), 95-111 https://doi.org/10.1080/0141192990250107
  37. Messick, S. (1994). The interplay of evidence and consequences in the validation of performance assessments. Educational Researcher, 23(2): 13-23 https://doi.org/10.3102/0013189X023002013
  38. Mitchell, S. (2001). What is this thing called argument? In R. Andrews & S. Mitchell (Eds.), Essays in argument. London: Middlesex University Press
  39. Moskal, B. M., & Leydens, J. A. (2000). Scoring rubric development: Validity and reliability. Practical Assessment, Research & Evaluation, 7(10)
  40. Naylor, S., Keogh, B., & Downing, B. (2007). Argumentation and primary science. Research in Science Education, 37, 17-39 https://doi.org/10.1007/s11165-005-9002-5
  41. Newton, P., Driver, R. & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21, 553-576 https://doi.org/10.1080/095006999290570
  42. Nussbaum, E. M. (2008). Collaborative discourse, argumentation, and learning: Preface and literature review. Contemporary Educational Psychology, 33, 345-359 https://doi.org/10.1016/j.cedpsych.2008.06.001
  43. O'Donnell, A. M., & King, A. (Eds.). (1998). Cognitive perspectives on peer learning. Mahwah, NJ: Erlbaum
  44. Osborne, J. F., Erduran, S., Simon, S., & Monk, M. (2001). Enhancing the quality of argumentation in school science. School Science Review, 82(301), 63-70
  45. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Researcher in Science Teaching, 41(10), 994-1020 https://doi.org/10.1002/tea.20035
  46. Perella, J. (1987). The debate method of critical thinking: An introduction to argumentation. Dubuque, IA: Kendall/Hun
  47. Pollock, J. L. (1987). Defeasible reasoning. Cognitive Science, 11, 481 518 https://doi.org/10.1207/s15516709cog1104_4
  48. Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B., Steinmuller, F., & Leone, T. J. (2001). BGUILE: Strategic and conceptual scaffolds for scientific inquiry in biology classrooms. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 263 305). Mahwah, NJ: Erlbaum
  49. Sadler, T. D., & Fowler, S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90, 986-1004 https://doi.org/10.1002/sce.20165
  50. Sampson, V., & Clark, D. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472 https://doi.org/10.1002/sce.20276
  51. Sandoval, W. A., & Millwood, K. A. (2005). The quality of students' use of evidence in written scientific explanations. Cognition And Instruction, 23(1), 23-55 https://doi.org/10.1207/s1532690xci2301_2
  52. Schafer, W. D., Swanson, G., Bene, N., & Newberry, G. (2001). Effects of teacher knowledge of rubrics on student achievement in four content area. Applied Measurement in Education, 14, 151-170 https://doi.org/10.1207/S15324818AME1402_3
  53. Schwarz, B., & Glassner, A. (2003). The blind and the paralytic: Supporting argumentation in everyday and scientific issues. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 227-260). Dordrecht, the Netherlands: Kluwer
  54. Simon, S., Erduran, S., & Osborne, J.(2006). Learning to Teach Argumentation: Research and development in the Science Classroom. International Journal of Science Education, 28(2-3), 235-260 https://doi.org/10.1080/09500690500336957
  55. Siegel, M. A., Hynds, S., Siciliano, M., & Nagle, B. (2006). Chapter 7. Using rubrics to foster meaningful learning. In McMahon, M., Simmons, P., Sommers, R., Debates, D., & Crawley, F. (Ed.) Assessment in Science. (pp. 89-106). Arlington: NSTA press
  56. Takao, A. Y., Prothero, W. A., & Kelly, G. J. (2002). Applying argumentation analysis to assess the quality of university oceanography students' scientific writing. Journal of Geoscience Education, 5(1), 40-48 https://doi.org/10.5408/1089-9995-50.1.40
  57. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press
  58. Van Gelder, T. (2002). Argument mapping with reasonable. Philosophy and Computers, 2(1), 85-90
  59. Veerman. A., Andriessen. J., & Kanselaar. G. (2002). Collaborative argumentation in academic education, Instructional Science, 30, 155-186 https://doi.org/10.1023/A:1015100631027
  60. Waltman, K., Kahn, A., & Koency, G. (1998). Alternative approaches to scoring: The effect of using different scoring methods on the validity of scores from a performance assessment. CSE Technical Report 488. Los Angeles, CA: National Center for Research on Evaluation, Standards, and Student Testing
  61. Yore, L. D., & Treagust, D. F. (2006). Current realities and future possibilities: language and science literacy-empowering research and informing instruction. International Journal of Science Education, 28(2-3), 291-314 https://doi.org/10.1080/09500690500336973
  62. Zembal-Saul, C., Munford, D., Crawford, B., Friedrichsen, P., & Land, S. (2003). Scaffolding preservice teachers' evidencebased arguments during an investigation of natural selection. Research in Science Education, 32, 437-463 https://doi.org/10.1023/A:1022411822951
  63. Zimmaro, D. M. (2004). Developing grading rubrics. Retrieved from http://www.utexas.edu/academic/mec/research/pdf/rubricshandou t.pdf
  64. Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39, 35-62 https://doi.org/10.1002/tea.10008