Radical Scavenging Activities and Protective Effects against Oxidative Damage to DNA of Extracts from Medicinal Plants with known Osteoprotective Effects

골질 보호 작용이 있는 수종 생약 추출액의 래디칼 소거능 및 DNA 보호 효과

  • Published : 2009.06.30

Abstract

Among aging diseases, the most basic problem is a decrease in bone mineral density. Patients with osteoporosis are steadily increasing in the world. This study was investigated to show the relationship between osteoporotic effects and oxidative damage. Water extracts of 15 medicinal plants and ethanol extracts of 14 medicinal plants with known anti-osteoporotic effects, were tested for their radical scavenging activity using DPPH, ABTS, SRSA and FRAP assay. Water extract of Cornus officinalis, Rubus coreanus and ethanol extract of Rubus coreanus, Viscium album var. coloratum, Cimicifuga heracleifolia showed about 15-20 mg/g of total phenolic contents. Water extract of Cornus officinalis, Rubus coreanus and Epimedium koreanum showed high radical scavenging activity. Ethanol extract of Drynaria fortunei, Cornus officinalis, Rubus coreanus, Gentiana scabra and Astragalus membranaceus showed high radical scavenging activity. Water extract of Drynaria fortunei, Cornus officinalis, Nelumbo nucifera, Epimedium koreanum, and Gentiana scabra showed very strong protective effect against oxidative damage to DNA. These results suggest the correlation between anti-osteoporotic effects and antioxidative effects.

Keywords

References

  1. Seeman, E. (2008) Structural basis of growth-related gain and age-related loss of bone strength, J. of Rheumatology (Oxford), 47(suppl. 4) : iv2-8 https://doi.org/10.1093/rheumatology/ken177.
  2. Badwey, J. A. and Karnovsky, M. L. (1980) Active oxygen species and the fucntion of phagocytic leucocytes. Ann. Intern. Med. 93: 480-485
  3. Babior, B. M. (2000). Phagocytes and oxidative stress. Am. J. Med. 109: 33-44 https://doi.org/10.1016/S0002-9343(00)00481-2
  4. Farinati, F., Cardin, R., Degan, P., Rugge, M., Mario, F. D., Bonvicini, P. and Naccarato, R. (1998) Oxidative DNA damage accumulation in gastric carcinogenesis. Gut 42: 351-356 https://doi.org/10.1136/gut.42.3.351
  5. Cooke, M. S., Mistry, N., Wood, C., Herbert, K. E. and Lunec, J. (1997) Immunogenicity of DNA damaged by ROS implications for anti-DNA antibodies in Iupus. Free Rad. Biol. Med. 22: 151-159 https://doi.org/10.1016/S0891-5849(96)00283-3
  6. Darely-Usmer, V. and Halliwell, B. (1996) Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm. Res. 13: 649-662 https://doi.org/10.1023/A:1016079012214
  7. Parthasarathy, S., Steinberg, D. and Witztum, J. L. (1992) The role of oxidezed LDL in the pathogenesis of atherosclerosis. Ann. Rev. Med. 43: 219-225 https://doi.org/10.1146/annurev.me.43.020192.001251
  8. Laurindo, F. R., da Luz, P. L., Uint, L., Rocha, T. F., Jaeger, R. G. and Lopes, E. A. (1991) Evidence for superoxide radical dependent coronary artery vasospasm after angioplasty in intact dogs. Circulation 83: 1705-1715
  9. Nakazono, K., Watanabe, N., Matsuno, K., Sasaki, J., Sato, T. and Inoue, M. (1991) Does superoxide underlie the pathogenesis of hypertension? Proc. Natl. Acad. Sci .USA 88: 10045-10048 https://doi.org/10.1073/pnas.88.22.10045
  10. Palinski, W., Miller, E. and Witztum, J. L. (1995) Immunization of LDL receptor - deficient rabbits with homologous MDA modified LDL reduces atherogenesis. Proc. Natl. Acad. Sci .USA 92: 821-825 https://doi.org/10.1073/pnas.92.3.821
  11. Garrett, I. R., Boyce, B. F., Oretto, R. O., Bonewald, L., Poser, J. and Mundy GR. (1990) Oxygen derived free radiclas stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Invest. 85: 632-639 https://doi.org/10.1172/JCI114485
  12. Lean, J. M., Jagger, C. J., Kirstein, B., Fuller, K. and Chambers, T. J. (2005) Hydrogen peroxide is essential for estrogendeficiency bone loss and osteoclast formation. Endocrionology 146: 728-735 https://doi.org/10.1210/en.2004-1021
  13. Deyhim, F., Mandadi, K., Patil, B. S. and Faraji, B. (2008) Grapefruit pulp increases antioxidant status and improves bone quality in orchidectomized rats. Nutrition. 24(10): 1039-1044 https://doi.org/10.1016/j.nut.2008.05.005
  14. Puel, C., Mardon, J., Agalias, A., Davicco, M. J., Lebecque, P., Mazur, A., Horcajada, M. N., Skaltsounis, A. L. and Coxam, V. (2008) Major phenolic compounds in olive oil modulate bone loss in an ovariectomy/inflammation experimental model. J. Agric. Food Chem. 56(20): 9417-9422 https://doi.org/10.1021/jf801794q
  15. Cha, B. C., Lee, S. K., Lee, H. W., Lee, E., Choi, M. Y., Rhim, T. J. and Park, H. J. (1997) Antioxidnat effect of domestic plants. Kor. J. Pharmacogn. 28: 15-20
  16. Wang, X. L., Wang, N. L., Zhang, Y., Gao, H., Pang, W. Y., Wong, M. S., Zhang, G., Qin, L. and Yao, X. S. (2008) Effects of eleven flavonoids from the osteoprotective fraction of Drynaria fortunei (KUNZE) J. SM. on osteoblastic proliferation using an osteoblast-like cell line. Chem. Pharm. Bull. (Tokyo). 56(1): 46-51 https://doi.org/10.1248/cpb.56.46
  17. Park, C. K., Lee, Y., Chang, E. J., Lee, M. H., Yoon, J. H., Ryu, J. H. and Kim, H. H. (2008) Bavachalcone inhibits osteoclast differentiation through suppression of NFATc1 induction by RANKL. Biochem. Pharmacol. 75(11): 2175-2182 https://doi.org/10.1016/j.bcp.2008.03.007
  18. Jin, U. H., Kim, D. I., Lee, T. K., Lee, D. N., Kim, J. K., Lee, I. S. and Kim, C. H. (2006) Herbal formulation, Yukmijihang-tang-Jahage, regulates bone resorption by inhibition of phosphorylation mediated by tyrosine kinase Src and cyclooxygenase expression. J. Ethnopharmacol. 106(3): 333-343 https://doi.org/10.1016/j.jep.2006.01.012
  19. Do, S. H., Lee, J. W., Jeong, W. I., Chung, J. Y., Park, S. J., Hong, I. H., Jeon, S. K., Lee, I.S. and Jeong, K. S. (2008)Bone-protecting effect of Rubus coreanus by dual regulation of osteoblasts and osteoclasts. Menopause. 15(4 Pt 1): 676-683 https://doi.org/10.1097/gme.0b013e31815bb687
  20. Zhang, D. W., Cheng, Y., Wang, N. L., Zhang, J. C., Yang, M. S. and Yao, X. S. (2008) Effects of total flavonoids and flavonol glycosides from Epimedium koreanum Nakai on the proliferation and differentiation of primary osteoblasts. Phytomedicine. 15(1-2): 55-61 https://doi.org/10.1016/j.phymed.2007.04.002
  21. Zhang, R., Liu, Z. G., Li, C., Hu, S. J., Liu, L., Wang, J. P. and Mei, Q. B. Du-Zhong (Eucommia ulmoides Oliv.) cortex extract prevent OVX-induced osteoporosis in rats. Bone 2008 Sep 16. [Epub ahead of print]
  22. Chiu, P. Y., Leung, H. Y., Siu, A. H., Poon, M. K., Dong, T.T., Tsim, K. W. and Ko, K. M. (2007) Dang-Gui Buxue Tang protects against oxidant injury by enhancing cellular glutathione in H9c2 cells: role of glutathione synthesis and regeneration. Planta Med. 72(2): 134-141
  23. Singleton, V. L. and Rossi, A. (1965) Colorymetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Viticult. 16: 144-158
  24. Blos, M. S. (1958) Antioxidant determination by use of a stable free radical. Nature 26: 1199-1200
  25. Re, R., Pellegrini, N., Proteggente,A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidnt activity applying and improved ABTS radical action decolorization assay. Free Radical Biol. Med. 26: 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  26. Liu, F., Ooi, V. E.C., and Chang, S. T. (1997) Free radical scavenging activities of mushroom polysaccahride extracts. Life Sci. 60: 763-771 https://doi.org/10.1016/S0024-3205(97)00004-0
  27. Benzie, I. F. F. and Strain, J. J. (1996) The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidnat power': The FRAP assay. Anal. Biochem. 239: 70-76 https://doi.org/10.1006/abio.1996.0292
  28. Rivero-Perez, M. D., Muniz, P. and Gonzalez-Sanjose, M. L. (2007) Antioxidant profile of red wine eva;uated by total antioxidant capcacity, scavenger activity and biomarkers of oxidative stress methologies. J. Agri. Food. Chem. 55: 5476- 5483 https://doi.org/10.1021/jf070306q