Relationship between Water Stable Aggregate and Macroporosity in Upland Soils Calculated by Fragmentation Fractal Dimension

파쇄프랙탈차원을 이용한 밭토양 내수성입단과 대공극률의 관계 평가

  • 한경화 (농촌진흥청 국립농업과학원) ;
  • 조현준 (농촌진흥청 국립농업과학원) ;
  • 이협성 (농촌진흥청 국립농업과학원) ;
  • 허승오 (농촌진흥청 국립농업과학원) ;
  • 하상건 (농촌진흥청 국립농업과학원)
  • Received : 2009.01.17
  • Accepted : 2009.02.10
  • Published : 2009.02.28

Abstract

The objectives of this study were to investigate the aggregate fragmentation in wet-sieving and to evaluate the relationship between the aggregate fragmentation fractal dimension and macro-porosity of upland soils, using three different textural types of soils including Gopyeng series (Fine, Typic Hapludalfs), Gyuam series (Fine silty over coarse silty, Fluvaquentic Eutrudepts), and Jungdong series (Coarse loamy, Typic Udifluvents) located in Gyeonggi province. Undisturbed soil samples with five replicates were seasonally sampled and used for measuring water stable aggregate, macropores, and physico-chemical properties of soils. The aggregate stability in wet-sieving was digitalized as three types of fragmentation fractal dimension ($D_f$), geometric mean diameter (GMD), and mean weight diameter (MWD). $D_f$ had higher correlation with GMD than with MWD. Seasonal aggregate stability showed the highest values in summer, and decreased in the order of spring and autumn. The macroporosity had higher in topsoil, in autumn, and in ridge, than in plow pan layer, in summer, and in row, respectively. The relationship between $D_f$ and macroporosity, especially more than 99 m, showed high correlation only in soils with $D_f$ less than 3.1, which means more aggregated soils compared to soils with $D_f$ more than 3.1. Besides, in the soils with the fractal dimension less than 3.1, the power function relation between saturated hydraulic conductivity and macroporosity more than 99 m had relatively high determinant coefficient, and vice versa. Therefore, it could be thought that fragmentation fractal dimension is available for confirming macroporosity induced from aggregation.

본 연구는 밭토양 내수성입단의 계절별 특성을 밝히고 파쇄프랙탈차원을 이용하여 대공극률과의 관계를 구명코자 수행하였다. 대상 토양은 토성이 다른 세 지점으로 고평통 (Fine, Typic Hapludalfs), 규암통 (Fine silty over coarse silty, Fluvaquentic Eutrudepts), 중동통(Coarse loamy, Typic Udifluvents)으로 경기도에 위치하였다. 봄, 여름, 가을에 불교란 시료를 채취하고 내수성입단과 대공극률, 토양이화학성을 측정하였다. 내수성입단은 파쇄프랙탈차원($D_f$), 기하평균지름(GMD), 중량평균지름(MWD)의 세 가지로 계수화하였다. $D_f$는 MWD보다 GMD와 상관이 높게 나타났고, 무차원의 입단파쇄과정에 근거하여서 실험에 사용한 입단크기와 전처리과정의 영향을 덜 받아 내수성입단의 계수화에 적절하다고 판단할 수 있었다. 계절적으로 내수성입단은 여름>봄>가을순으로 나타났고 생물활성과 토양수분의 영향으로 파악할 수 있었다. $D_f$ 3.1이하의 토양에서 $D_f$와 대공극률과역의 상관관계를 나타냈으며 특히 $99{\mu}m$ 이상의 공극률과 상관이 높았으며 $D_f$ 3.1이상의 토양에서는 상관이 나타나지 않았다. 또한 $D_f$ 3.1이하의 토양에서는 대공극률과 포화수리전도도의 누승함수 적합도가 높게 나타났다. 따라서 내수성입단의 파쇄프랙탈차원은 입단화에 의한 대공극형성과 해석에 유용하다고 판단할 수 있었다.

Keywords

References

  1. Bronick, C.J. and R. Lal. 2005. Soil structure and management: a review. Geoderma 124: 3-22 https://doi.org/10.1016/j.geoderma.2004.03.005
  2. Crawford, J. M., Ya. A. Pachepsky, and W. J. Rawls. 2000. Integrating processes in soils using fractal models. In: Crawford, J. M., Ya. A. Pachepsky, and W. J. Rawls. Fractals in Soil Science. Developments in Soil Science 27. Elsevier
  3. Dalal, R. C., and B. J. Bridge. 1996. Aggregation and organic matter storage in sub-humid and semi-arid soils. In: Carter, M. R., and B. A. Stewart, Structure and Orgainc Matter Storage in Agricultural Soils. CRC Press, Boca Raton, FL, pp. 263-307
  4. Danielson, R. E. and P. L. Sutherland. 1986. Porosity. In: Klute, A. 1986. Method of soil analysis. Part 1. Physical and Mineralogical methods, 2nd edn. ASA and SSSA, Madison, WI
  5. Han, K. H., H. M. Ro, H. J. Cho, L.Y. Kim , S. W. Hwang, H. R. Cho, and K. C. Song. 2008. Mobility of nitrate and phosphate through small lysimeter with three physico-chemically different soils. Korean J. Soil Sci. Fert. 41:260-266
  6. Han, K. H.,H. J. Cho, H. S. Lee, D. S. Oh., and L.Y. Kim. 2007. Stable macro-aggregate in wet sieving and soil properties. Korean J. Soil Sci. Fert. 40:255-261
  7. Kay, B.D. 1989. Rates of change of soil structure different cropping system. Adv. Soil Sci. 12: 1-52
  8. Mandelbrot. 1993. The fractal geometry of nature. Freeman, New York.
  9. Marshall, T. J. 1959. Relations between water and soil. Tech. Comm. 50, Commonwealth Bur. Soils, Harpenden, U.K
  10. McDonald, P. M. 1967. Disposition of soil moisture held in temporary storage in large pores. Soil Sci. 103(2):139-143 https://doi.org/10.1097/00010694-196702000-00008
  11. McLaren, R .G. and K. C. Cameron. 1996. Soil Science. 2nd edition. Oxford University Press
  12. Mosley, M. P. 1979. Streamflow generation in a forested watershed, New Zealand. Water Resour. Res. 15(4):795-806 https://doi.org/10.1029/WR015i004p00795
  13. NIAST. 2000. Method of soil and plant analysis. Published by National Institute of Agricultural Science & Technology. Suwon, Korea
  14. Oades, J. M. 1984. Soil organic matter and structural stability:mechanisms and implications for management. Plant Soil 76:319-337 https://doi.org/10.1007/BF02205590
  15. Perfect, E., V. Rasiah, and B. D. Kay. 1992. Fractal dimension of soil aggregate-size distributions calculated by number and mass. Soil Sci. Soc. Am. J. 56:1407-1409 https://doi.org/10.2136/sssaj1992.03615995005600050012x
  16. Perrier, E. M. A, and N. R. A. Bird. 2003. The PSF model of soil structure: A multiscale approach. In: Pachepsky, Ya. A., D. E. Radcliffe, H. M. Selim. Scaling Methods in Soil Physics. CRC Press LLC
  17. Rasiah, V., E. Perfect, and B. D. Kay. 1995. Linear and nonlinear estimates of fractal dimension for soil aggregate fragmentation. Soil Sci. Soc. Am. J. 59:83-87 https://doi.org/10.2136/sssaj1995.03615995005900010012x
  18. Six, J., E.T. Elliott, and K. Paustian. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32:1350-1358 https://doi.org/10.1016/S0038-0717(00)00179-6
  19. Six, J., H. Bossuyt, S. Degryze, and K. Denef. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research 79:7-31 https://doi.org/10.1016/j.still.2004.03.008
  20. Sparks, D. L. 1996. Method of soil analysis. part 3. Chemical methods, 3rd edn. ASA and SSSA, Madison, WI
  21. Tisdall, J. M. and J. M. Oades. 1982. Organic matter and waterstable aggregates. J. Soil Sci. 62:141-163 https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
  22. Turcotte, D. L. 1986. Fractals and fragmentation. J. Geophys. Res. 91:1921-1926 https://doi.org/10.1029/JB091iB02p01921
  23. White, R. E.. 1985. The influence of macropores on the transport of dissolved and suspended matter through soil. Adv. Soil Sci. 3:95-120
  24. Young, I. M., J. W. Crawford, and C. Rappoldt. 2001. New methods and models for characterizing structural heterogeneity of soil. Soil & Tillage Research 61:33-45 https://doi.org/10.1016/S0167-1987(01)00188-X