Changes in the Soil Physical Properties of Vineyard Converted from Paddy Field

논에서 전환한 포도원의 토양물리적 특성변화

  • Yun, Eul-Soo (Dept. of Functional Crop, National Institute Crop Science, RDA) ;
  • Jung, Ki-Youl (Dept. of Functional Crop, National Institute Crop Science, RDA) ;
  • Park, Ki-Do (Dept. of Functional Crop, National Institute Crop Science, RDA) ;
  • Ko, Jee-Yeon (Dept. of Functional Crop, National Institute Crop Science, RDA) ;
  • Lee, Jae-Saeng (Dept. of Functional Crop, National Institute Crop Science, RDA) ;
  • Park, Sung-Tae (Dept. of Functional Crop, National Institute Crop Science, RDA)
  • 윤을수 (국립식량과학원 기능성작물부 기능성잡곡과) ;
  • 정기열 (국립식량과학원 기능성작물부 기능성잡곡과) ;
  • 박기도 (국립식량과학원 기능성작물부 기능성잡곡과) ;
  • 고지연 (국립식량과학원 기능성작물부 기능성잡곡과) ;
  • 이재생 (국립식량과학원 기능성작물부 기능성잡곡과) ;
  • 박성태 (국립식량과학원 기능성작물부 기능성잡곡과)
  • Received : 2009.05.04
  • Accepted : 2009.05.24
  • Published : 2009.06.30

Abstract

This study was conducted to develop rational soil management and enhance the productivity of lands converted from paddy soils. Specifically, the changes in the soil physical properties brought about by the change in land usage from paddy soil were evaluated. This was carried out from 1999 to 2001 at 50 site in large-scale converted paddy fields of Kimcheon, Youngcheon, Gyeongsan and Milyang in the Youngnam region, categorized according to soil texture and drainage class. The ridge height of converted paddy soils was higher in coarse-textured and poorly-drained soils than in fine-textured and well-drained soils. The gray color of the surface soil was of lesser degree in converted soils than paddy soils and more notable in welldrained soils. The porosity ratio and the formation of aggregate structure were higher, and the appearance of soil mottling was deeper in converted paddy fields than in paddy soils. The glaying layer "g" of surface soil degraded with time. The porosity and amount of water stable aggregate was found to increase with time after conversion. The penetration resistance of the converted paddy soil was lower and deeper with time after conversion. The soil aeration of the converted paddy soil was lower in sandy loam than in loamy soil. Furthermore, soil aeration was influenced by ridge height and drainage class in poorly-drained soils.

논에서 전환된 포도원(전환포도원)의 전환 후 년수 및 토양특성별 물리적 특성변화 양상을 구명하여 전환지 생산성 향상을 위한 합리적 토양 관리대책을 제시코자 전환지가 많은 경북 김천, 영천지역을 중심으로 포도원과 인근 벼 재배지 50개 지점을 조사 분석한 결과 전환포도원의 이랑 높이는 토성이 세립질이고 배수가 불량할수록 높았고, 토양단면 내 반문의 출현깊이(Ap층 두께)는 조립질 토양에서 깊은 경향이었음. 전환지는 인근 유사토양 벼 재배지 작토층 토색의 경우 색상이 밝아지는 경향을 보여 회색도가 벼 재배지의 경우 20인데 비해 전환지는 5로 감소했고, 이 경향은 토양 배수조건이 양호한 토양에서 현저하였음. 전환여부에 따른 투기도 차이는 토심10cm 이하에서 현저했고 토심 30cm 이하에서는 뚜렷한 차이가 없었고 전환지에서 투기도에 미치는 토양특성의 영향은 세립질의 경우 이랑의 높이가, 조립질은 배수등급이었다. 전환포도원의 물리성은 전환 후 년수가 경과함에 따라 공극율과 내수성입단이 증가하는 경향이었고, 원추관입저항의 경우 휴립한 부위는 $5kg/cm^2$ 이하인 반면, 그 이하의 부위는 $10kg/cm^2$ 이상을 보였음. 이상의 결과로 볼 때 전환포도원의 토양특성은 세립질보다 조립질이 쉽게 변하는 경향이었고, 배수불량인 세립질토양에서는 고휴재배 등 적절한 표토관리가 요구되었다.

Keywords

References

  1. Amezquita Edgar. 1998. Soil physical characteristics under different land systems and duration on the colombian savannas. Transaction of 16th World Congress of Soil Sci. France. Symposium
  2. G. Rajaram, D, C. Erbach. 1999. Effect of wetting and drying on soil physical properties. Journal of Terramechanics 36:39-49 https://doi.org/10.1016/S0022-4898(98)00030-5
  3. IKEDA Minoru, HARADA Isamu, TAMURA Kaoru. 1958. Studies on Three Phases of Soils (Part 4) : Three Phases of Soil Horizons and Plant Growth. Journal of the science of soil and manure, Japan 29(2) pp.84-86
  4. International Rice Research Institute(IRRI). 1987. Physical Measurements in Flooded Rice Soils. pp. 65
  5. Institute of Agricultural Technology. 1973. Soil Survey Manual. of Korea (Soil survey material 1). pp.237
  6. Lim jung-nam and Jae-seb Oh. 1970. Studies on the soil physical properties of orchard land - Study on the soil physical properties suitable for apple orchard - Res. Rept. RDA. 13 : 71-76
  7. Jung Y. T. and K. T. Um. 1992. Process of Padification and Implication for Classification. Proc. of the Eighth International Soil Correlation Meeting(Ⅷ ISCM) : Characterization, Classification and Utilization of Wet Soils. MSS/USDA. 1992. 3. : 152-160
  8. Jung yeun-tae, Il-soo Son, Eul-soo Yun, Jung-kon, Seg-jae Jung and Guk-hyen Cho. 1994. A study on the establishment of suitablity grouping system for paddy-upland rotation system in Korea. Res. Rept. RDA. 36(2) : 262-267
  9. Jung Yeong-sang and Hyung-sik Lim. 1989. Influence of soil texture and bulk density on root growth characteristics and nutrient influx of soybean plant. Korean J. Soil Sci. Fert. 22(3) : 221∼227
  10. Kim Lee-yul, In-sang Jo, Ki-tae Um and Hong-sik Min. 1990. Changes of soil characteristics and crop productivity by paddyupland rotation system. 1. Changes of soil physical properties. Res. Rpert. RDA (S&F) 32(2) : 1-7
  11. Kim Lee-yul, Hyun-jun Cho, Byung-keun Hyun, Woo-pung Park. 1990. Effects of Physical Improvement Practices at Plastic Film House Soil. Korean J. Soil Sci. Fert. 34(2):92-97
  12. KUTSUNA Kozo, MIYAZAKI Naomi. 1983. Changes of soil physical properties by paddy-upland rotation. Research bulletin of the Hokkaido National Agricultural Experiment Station. 137 : 107-125
  13. Michael H. Beare and R. Russell Bruce. 1993. A comparison of methods for measuring water stable aggregates implications for determining environmental effects on soil structure. Geoderma 56. 87-104 https://doi.org/10.1016/0016-7061(93)90102-Q
  14. MISONO Shigeru. 1968. Recent study on soil physical properties in Japan. Agricultural Technology. 23(7) : 301-305
  15. Munsell Soil Color Charts. 1994(Revised edition). Machbeth Division of Kolimorgen Instruments Corporation. NY. USA
  16. National Institute of Agricultural Science and Technology(NIAST). 1992. General remarks of Korean soils, revised edition. (Soil survey material 13). pp. 725
  17. Park chang-young, Ui-gum Kang, Gye-seon Hwang, Yeun-tae Jung. 1993. Changes of crop yields according to cropping system and fertilizing levels in paddy-upland rotation soils. Res. Rpert. RDA. 35(1) : 281-288.
  18. Park Jin-myeon, Hee-myong Ro, Ki-yeol Kim. 1994. Soil physicochemical roperties and nutrition composition of the fruit tree in the orchard converted from paddy field. Res. Rept. RDA. 36(1) 277-282
  19. S. Grunwald, D.J. Rooney, K. McSweeney, B. L.owery. 2001. Development of pedotransfer function for a profile cone penetrometer. Geoderma 100:25-47 https://doi.org/10.1016/S0016-7061(00)00079-3
  20. TAKIJIMA Yasuo. 1967. Rice growth and soil hardness of paddy field. Soil physics, Japan. 16: 10-15
  21. TANBARA Kazuhiro. 1968. Suitable and unsuitable condition of soil three phase in mandarin orange orchard in Japan. Agriculture technology of Japan. 25-37
  22. U.S. Dept. Agriculture (soil survey division staff). 1993. Soil Survey Manual
  23. U.S. Dept. Agriculture. 1999. Soil taxonomy, A Basic System of Soil Classification
  24. Zou C. C. Penforld, R. Sando, R.K. Misra, I. Hudson. 2001. Effects of soil air-filled porosity, soil matric potential and soil strength on primary root growth of Radiata pine seedling. Plant and Soil. 236 : 105-115 https://doi.org/10.1023/A:1011994615014