DOI QR코드

DOI QR Code

Estimation of Soil CO2 Efflux from an Apple Orchard

사과 과수원에서의 토양 CO2 발생량 평가

  • Lee, Jae-Man (Department of Applied Plant Science, Chung Ang University) ;
  • Kim, Seung-Heui (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Park, Hee-Seung (Department of Applied Plant Science, Chung Ang University) ;
  • Seo, Hyeong-Ho (Agricultural Research Center for Climate Change, National Institute of Horticultural & Herbal Science, RDA) ;
  • Yun, Seok-Kyu (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 이재만 (중앙대학교 식물응용과학과) ;
  • 김승희 (국립원예특작과학원 과수과) ;
  • 박희승 (중앙대학교 식물응용과학과) ;
  • 서형호 (국립원예특작과학원 온난화농업대응연구센터) ;
  • 윤석규 (국립원예특작과학원 과수과)
  • Published : 2009.06.30

Abstract

This study was conducted to quantify the soil respiratory $CO_2$ emission (SR) in an apple orchard and to determine its relationship with key environmental factors such as air temperature, soil temperature and soil moisture content. Experiment was made over the period from 23 April 2007 to 31 March 2008 in 'Fuji' apple orchard of National Institute of Horticultural and Herbal Science in Suwon, Gyeonggi-do, Korea. The SR was measured by using the automatic opening/closing chamber system based on a closed method. Diurnal variations in SR showed an increase around 0700 hours with increasing soil temperature, its peak between 1400 and 1500 hours, and then a gradual decrease thereafter. Daily variations in SR depended largely on soil and air temperatures over the year, ranging from 0.8 to 13.7 g $CO_2$ $m^{-2}d^{-1}$. During the rainy spell in summer (July$\sim$Autumn) with higher temperature and more precipitation, the SR was lower than that in the spring (May$\sim$June) with moderate temperature. The SR showed a significant exponential relationship with soil temperature ($r^2=0.800$) and air temperature ($r^2=0.805$), but not with soil moisture content ($r^2=0.160$). The $Q_{10}$ values of SR with annual soil temperature and air temperature were 2.0 and 1.9, respectively. The annually integrated SR was 19.6 ton $CO_2$ $ha^{-1}$.

본 실험은 사과원 토양으로부터의 $CO_2$방출량을 정량적으로 파악하고, 토양호흡과 환경인자와의 관계를 알아보기 위해 수행되었다, 실험은 경기도 수원 국립 원예특작과학원 내의 사과 '후지' 과수원에서 2007년 4월 23일$\sim$2008년 3월 31일까지 실시하였다. 자체 제작한 자동 토양호흡 측정장치(밀폐법)를 이용하여 밀폐법에 근거하여 사과원의 토양 호흡을 지속적으로 측정 하였다. 토양 호흡속도의 일변화는 일출 이후의 온도 상승과 함께 아침 7시경부터 증가하여, 온도가 가장 높은 $14{\sim}15$시경에 최대값($399.4{\sim}450.9mg$ $CO_2$ $m^2d^{-1}$)을 나타내었으며 이후 온도의 하강과 함께 감소하였다. 토양 호흡속도는 $0.82{\sim}13.65g$ $CO_2$ $m^2d^{-1}$ 범위의 계절변화를 보였고, 온도가 높고 강우가 많았던 $7{\sim}9$월에는 비교적 온도가 낮았던 $5{\sim}6$월보다 토양호흡 속도가 낮았다. 토양호흡속도는 지온($r^2=0.800$) 및 기온($r^2=0.805$)과 유의한 지수함수적 관계를 보였다. 지온과 기온에 대한 토양호흡속도의 $Q_{10}$ 값은 각각 2.0과 1.9이었으며, 연간 총 토양 호흡량은 19.6ton $CO_2$ $ha^{-1}$ 이었다.

Keywords

References

  1. Adachi, M., Y. S. Bekku, W. Rashidah, T. Okuda, and H. Koizumi, 2006: Differences in soil respiration between different tropical ecosystems. Applied Soil Ecology 34, 258-265 https://doi.org/10.1016/j.apsoil.2006.01.006
  2. Boone, R. D., K. J. Nadelhoffer, J. D. Canary, and J. P. Kaye, 1998: Root exerts a strong influence on the temperature sensitivity of soil respiration. Nature 396, 570-572 https://doi.org/10.1038/25119
  3. Bowden, R. D., K. M. Newkirk, and G. Rullo, 1998: Carbon dioxide and methane fluxes by a forest soil under laboratorycontrolled moisture and temperature conditions. Soil biology and Biochemistry 30, 1591-1597 https://doi.org/10.1016/S0038-0717(97)00228-9
  4. Buchmann, N., 2000: Biotic and abiotic factors controling soil respiration rates in Picea abiesstands. Soil Biology and Biochemistry 32, 1625-1635 https://doi.org/10.1016/S0038-0717(00)00077-8
  5. Bunnell, F. L., D. E. N. Tait, and K. Van Cleve, 1977: Microbial respiration and substrate weight loss, 1. A general model of the influences of abiotic variables. Soil Biology and Biochemistry 9, 3-40
  6. Buyanovsky, G. A., G. H. Wagner, and C. J. Grantzer, 1986: Soil respiration in a winter wheat ecosystem. Soil science society of America Journal 50, 338-344 https://doi.org/10.2136/sssaj1986.03615995005000020017x
  7. Buyanowsky, G. A., and G. H. Wagner, 1983: Annual cycles of carbon dioxide level in soil air. Soil science society of America Journal 47, 1139-1145 https://doi.org/10.2136/sssaj1983.03615995004700060016x
  8. Davidson, E. A., E. Belk, and R. D. Boone, 1998: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperature mixed hardwood forest. Global Change Biology 4, 217-227 https://doi.org/10.1046/j.1365-2486.1998.00128.x
  9. Dong, Y., D. Scharffe, J. M. Lobert, P. J. Crutzen, and E. Sanhueza, 1998: Fluxes of CO2, Ch4 and N2O from a temperate forest soil: the effects of leaves and humus layers. Tellus 50B, 243-252
  10. Fang, C., J. B. Moncrieff, H. L. Gholz, and K. L. Clark, 1998: Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant Soil 205, 135-146 https://doi.org/10.1023/A:1004304309827
  11. Gough, C. M., and J. R. Siler, 2004: The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina Coastal Plain. Forest Ecology and Management 191(5), 353-363 https://doi.org/10.1016/j.foreco.2004.01.011
  12. Hongxing, Z., W. Xiaoke, F. Zongwei, S. Wenzhi, L. Wenzhao, and O. Zhiyun, 2007: Multichannel automated chamber system for continuous monitoring of CO2 exchange between the agro-ecosystem or soil and the atmosphere. Acta Ecologica Sinica 27(4), 1273-1282 https://doi.org/10.1016/S1872-2032(07)60028-6
  13. Jassal, R. S., and T. A. Black, 2006: Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique: Theory and practice. Agricultural and forest meteorology 140, 193-202 https://doi.org/10.1016/j.agrformet.2005.12.012
  14. Kim, J. S., 1996: Biomass and distribution of nitrogen and phosphorus for Pinus rigida , Larix leptolepis, and Quercus serrata stands in Yangpyeong Area. Ph.D. Thesis Korea University
  15. Knapp, A. K., S.L. Conard, and J. M. Blair, 1998: Determination of soil CO2 flux from a subhumid grassland: Effects of fire and fire history. Ecological application 4, 760-770
  16. Kosugi, Y., H. Tanaka, S. Takanashi, N. Matsuo, N. Ohte, S. Shibata, and M. Tani, 2005: Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest. Agricultural and Forest Meteorology 132, 329-343 https://doi.org/10.1016/j.agrformet.2005.08.010
  17. Kurganova, I., V. Lopes de gerenyu, L. Rozanova, D. Sapronov, T. Myakshina, and V. Kudeyarov, 2003: Annual and seasonal CO2 fluxes from Russian southern taiga soils. Tellus 55B, 338-344
  18. Lee, J. H., 2008: Effect of carbonization of agricultural product on increasing of carbon sequestration in red pepper soil. Master Thesis. Konkuk University
  19. Lee, Y. Y., and H. T. Moon, 2001: A study on the soil respiration in a Quercus acutissima forest. Journal of Ecology and Field Biology 24(3), 141-147
  20. Lessard, R., P. Rochette, E. Topp, E. Pattey, R. L. Deshardins, and G. Beaumont, 1994: Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites. Canadian Journal of Soil Science 74, 139-146 https://doi.org/10.4141/cjss94-021
  21. Linn, D. M., and J. W. Doran, 1984: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils. Soil Science Society of America Journal 48, 1267-1272 https://doi.org/10.2136/sssaj1984.03615995004800060013x
  22. Lloyd, J., and J. A. Taylor, 1994: On the temperature dependence of soil respiration. Functional Ecology 8, 315-323 https://doi.org/10.2307/2389824
  23. Londo, A. J., M. G. Messina, and S. H. Schoenholtz, 1999: Forest harvesting effects on soil temperate, moisture and respiration in a bottomland hardwood forest. Soil science society of America Journal 63, 637-644 https://doi.org/10.2136/sssaj1999.03615995006300030029x
  24. Martin, J. G., and P. V. Bolstad, 2005: Annual soil respiration in broadleaf forests of northern Wiscons influence of moisture site biological chemical physical characteristics. Biogeochemistry 73, 149-182 https://doi.org/10.1007/s10533-004-5166-8
  25. Mc Hale, P. J., M. J. Mitchell, and F. P. Bowles, 1998: Soil warming in a northern hardwood forest; trace gas fluxes and leaf litter decomposition. Canadian Journal of Forest Research 28, 1365-1372 https://doi.org/10.1139/cjfr-28-9-1365
  26. Min, Y. K., 2006: Characteristics on the soil carbon flux in the cool-temperate deciduous forest at Gwangneung. Master Thesis. Konkuk University
  27. Mitani, T., Y. Kosugi, K. Osaka, S. Ohkubo, S. Takanashi, and M. Tani, 2007: Spatial and temporal variability of soil respiration rate at a small watershed revegetated with Japanese cypress. Journal of the Japanese Forest Society 88, 496-507 https://doi.org/10.4005/jjfs.88.496
  28. Moon, H. S., 2004: Soil respiration in Pinus densiflora, Quercus variabilis and Platycarya strobilacea stands in Jinju, Gyeongnam province. Journal of Ecology and Field Biology 7(1), 57-65
  29. Nakayama, F. S., 1990: Soil respiration. Remote Sensing Reviews 5(1), 311-321 https://doi.org/10.1080/02757259009532138
  30. Nishimura, S., S. Sudo, H. Akiyama, S. Yonemura, K. Yagi, and H. Tsuruta, 2005: Development of a system for simultaneous and continuous measurement of carbon dioxide, methane and nitrous oxide fluxes from croplands based on the automated closed chamber method. Soil Science and Plant Nutrition 51(4), 557-564 https://doi.org/10.1111/j.1747-0765.2005.tb00064.x
  31. Ohashi, M., K. Gykusen, and A. Daito, 1999: Measurement of carbon dioxide evolution from a Japanse cedar (Cryptomeria japonica D. Don) forest floor using an openflow chamber method. Forest Ecology and Management 123, 105-114 https://doi.org/10.1016/S0378-1127(99)00020-1
  32. Raich, J. W., and K. J. Nadelhoffer, 1989: Belowground carbon allocation in forest ecosystem : Global trends. Ecology 70, 1346-1354 https://doi.org/10.2307/1938194
  33. Raich, J. W., and W. H. Schlesinger, 1992: The global carbon dioxide efflux in soil respiration and its relationship to vegetation and climate. Tellus 44B, 81-99
  34. Rastogi, M., S. Singh, and H. Pathak, 2002: Emission of carbon dioxide from soil. Current science 82, 510-517
  35. Rochette, P., R. L. Deshardins, E. G. Gregorhch, E. Patty, and R. Lessard, 1992: Soil respiration in barely (Hordeum vulgare L.) and fallow fields. Canadian Journal of Soil Science 72, 591-603 https://doi.org/10.4141/cjss92-049
  36. Shi, P. L., X. Z. Zhang, Z. M. Zhong, and H. Ouyang, 2006: Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau. Agricultural and Forest Meteorology 137, 220-233 https://doi.org/10.1016/j.agrformet.2006.02.008
  37. Son, Y. H., and H. W. Kim, 1996: Soil respiration in Pinus rigida and Larix leptolepis plantation. Journal of Korean Forestry Society 85, 496-505
  38. Tufekcioglu, A., J. W. Raich, T. M. Isenhart, and R. C. Schultz, 2001: Soil respiration within riparian buffer and adjacent crop fields. Plant and Soil 229, 117-124 https://doi.org/10.1023/A:1004818422908
  39. Yi, M. J. 2003: Soil CO2 evolution in Quercus variabilis and Q. mongolica forests in Chunchon, Kangwon provice. Journal of Korean Forestry Society 92(3), 236-269

Cited by

  1. Monitoring soil respiration using an automatic operating chamber in a Gwangneung temperate deciduous forest vol.34, pp.4, 2011, https://doi.org/10.5141/JEFB.2011.043
  2. Evaluation of sensitivity of soil respiration to temperature in different forest types and developmental stages of maturity using the incubation method vol.35, pp.1, 2012, https://doi.org/10.5141/JEFB.2012.001