DOI QR코드

DOI QR Code

Preparation and Characterization of KOH-Activated Carbons Developed from Petroleum Coke

  • Sayed Ahmed, S.A. (Department of physical Chemistry, National Research Centre) ;
  • Abo El-Enin, Reham M.M. (Department of physical Chemistry, National Research Centre) ;
  • El-Nabarawy, Th. (Department of physical Chemistry, National Research Centre)
  • Received : 2009.09.01
  • Accepted : 2009.11.21
  • Published : 2009.12.30

Abstract

Potassium hydroxide activated carbons were prepared from Egyptian petroleum cokes with different KOH/coke ratios and at different activation temperatures and times. The textural properties were determined by adsorption of nitrogen at $-196^{\circ}C$. The adsorption of iodine and methylene blue was also investigated at $30^{\circ}C$. The surface area and the non-micropore volume increased whereas the micropore volume decreased with the increase of the ratio KOH/coke. Also the surface area and porosity increased with the rise of activation temperature from 500 to $800^{\circ}C$. Textural parameter considerably increased with the increase of activation time from 1 to 3 h. Further increasing of activation time from 3 to 4 h was associated with a less pronounced increase in textural parameters. The adsorption of iodine shows the same trend of surface area and porosity change exhibited by nitrogen adsorption, with KOH/coke ratio and temperature of activation. Adsorption of methylene blue follows pseudo-first-order kinetics and its equilibrium adsorption follows Langmuir and D-R models.

Keywords

References

  1. Mingho, W.; Qingfang, Z.; Jieshan, Q.; Xia H.; Yansheng G.; Zhaofeng, L.; Aijun, Y.; Xin S. Fuel 2005, 84, 1992. https://doi.org/10.1016/j.fuel.2005.03.008
  2. Si Hyun, L.; Cheong Song, C. Fuel Process. Technol. 2000, 64, 141. https://doi.org/10.1016/S0378-3820(00)00070-9
  3. Takayuki, K.; Mitsuchiro, K.; Maurice, S.; Onyango, F. W.; Hitoki M. Appl. Therm. Eng. 2008, 28, 865. https://doi.org/10.1016/j.applthermaleng.2007.07.009
  4. Tseng, R. L.; Tseng, S. K. J. Colloid Interface Sci. 2005, 287, 428. https://doi.org/10.1016/j.jcis.2005.02.033
  5. Stavropoulas, G. G.; Zabaniotou, A. A. Micropor Mesopor. Mater. 2005, 82, 79. https://doi.org/10.1016/j.micromeso.2005.03.009
  6. Lillo-Rodenas, M. A.; Cazorla-Amoros, D.; Linares-Solano, A. Carbon 2003, 41, 267. https://doi.org/10.1016/S0008-6223(02)00279-8
  7. Matani, S.; Lee, S. I.; Saito, K.; Yoon, S. H.; Korai, Y.; Mochida, I. Carbon 2005, 43, 2295. https://doi.org/10.1016/j.carbon.2005.04.009
  8. Ahmadpour, A.; Do, D. D. Carbon 1996, 34, 471. https://doi.org/10.1016/0008-6223(95)00204-9
  9. Ehrburger, P.; Addoun, A.; Addoun, F.; Ddonnet, J. B. Fuel 1986, 65, 1447. https://doi.org/10.1016/0016-2361(86)90121-3
  10. Lozono-Castello, D.; Lillo-Rodenas, M. A.; Cazorla-Amoros, D.; Linares-Rodenas, A. Carbon 2001, 39, 741. https://doi.org/10.1016/S0008-6223(00)00185-8
  11. Yong, Z.; Bu-xing, H. Adsorp. Sci.; Technol. 2001, 19, 59. https://doi.org/10.1260/0263617011493971
  12. Mohammad, A.; Muhammed, A. R.; Mohammad, A. M.; Mohammad, B. S. Adsorp. Sci. & Techol. 2006, 24, 761. https://doi.org/10.1260/026361706781388950
  13. Puziy, A. M.; Poddubnaya, O. I.; Martinez-Alonso, A.; Suarez-Garcia, F.; Tascon, J. M. D. Carbon 2003, 41, 1181. https://doi.org/10.1016/S0008-6223(03)00031-9
  14. Hayashi, J.; Uclubayashi, M.; Harikawa, T.; Muroyama, K.; Gomes, V. G. Carbon 2002, 40, 2747. https://doi.org/10.1016/S0008-6223(02)00151-3
  15. Derpyshire, F.; Jagtoyen, M.; Thwaites, M. "Activated Carbons-Production; Application", in "Porosity in Carbon", ed. J. W. Patrick, E. Amold, London, 1995, 228.
  16. Lua, A. C.; Yang, T.; Guo, J. J. Anal. Appl. Pyrolysis 2004, 72, 279. https://doi.org/10.1016/j.jaap.2004.08.001
  17. Phan, N. H.; Rio-S., F. C.; Le Cloirec, P.; Nguyen, T. H. Carbon 2006, 44, 2569. https://doi.org/10.1016/j.carbon.2006.05.048
  18. Tseng, R. L. J. Hazardous Materials 2007, 147, 1020. https://doi.org/10.1016/j.jhazmat.2007.01.140
  19. Fawzi, B.; Sameer, A.-A.; Leema, M. Adsorp. Sci. & Technol 2003, 21, 597. https://doi.org/10.1260/026361703771953613
  20. Brunauer, S.; Deming, D. W.; Deming, L. S.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723. https://doi.org/10.1021/ja01864a025
  21. Sing, K. S. W. Chem. Ind. London, 1968, 1520.
  22. Huiping, Z.; Ying Y.; Lichun Y. Adsop. Sci. & Technol. 2008, 26, 533. https://doi.org/10.1260/0263-6174.26.7.533
  23. Azeuedo Diana, C. S.; Araiyo, J. C. S.; Moises, B.-N; Torres, B.; Jaguaribe, F.; Cavalante, L. Microp or Mesopor 2007, 100, 361. https://doi.org/10.1016/j.micromeso.2006.11.024
  24. Park, S.-J.; Jung, W.-Y.; J. Colloid. Interf. Sci. 2002, 250, 93. https://doi.org/10.1006/jcis.2002.8309
  25. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. https://doi.org/10.1351/pac198557040603
  26. Dubinin, M. M.; Radushkevich, L. V. Proc. Acad. Sci. USSR, Phys. Cem. Sect. 1947, 55, 331.
  27. Youssef, A. M.; El-Nabarawy, Th.; Samra, S. E. Colloids and Surfaces. A: Physicochem. Eng.: Aspects 2004, 235, 153. https://doi.org/10.1016/j.colsurfa.2003.12.017

Cited by

  1. Adsorption properties of activated carbon prepared from pre-carbonized petroleum coke in the removal of organic pollutants from aqueous solution vol.12, pp.3, 2011, https://doi.org/10.5714/CL.2011.12.3.152
  2. Influence of Amine Grafting on Carbon Dioxide Adsorption Behaviors of Activated Carbons vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3377