DOI QR코드

DOI QR Code

X-ray Photoelectron Spectroscopic Analysis of Modified MWCNT and Dynamic Mechanical Properties of E-beam Cured Epoxy Resins with the MWCNT

  • Lee, Young-Seak (Department of Nanotechnology, Chungnam National University) ;
  • Im, Ji-Sun (Department of Nanotechnology, Chungnam National University) ;
  • Yun, Seok-Min (Department of Nanotechnology, Chungnam National University) ;
  • Nho, Young-Chang (Radiation Application Research Division, Korea Atomic Energy Research Institute) ;
  • Kang, Phil-Hyun (Radiation Application Research Division, Korea Atomic Energy Research Institute) ;
  • Jin, Hang-Kyo (Korea Research Institute of Chemical Technology)
  • Received : 2009.10.19
  • Accepted : 2009.12.11
  • Published : 2009.12.30

Abstract

The surface treatment effects of reinforcement filler were investigated based on the dynamic mechanical properties of mutiwalled carbon nanotubes (MWCNTs)/epoxy composites. The as-received MWCNTs(R-MWCNTs) were chemically modified by direct oxyfluorination method to improve the dispersibility and adhesiveness with epoxy resins in composite system. In order to investigate the induced functional groups on MWCNTs during oxyfluorination, X-ray photoelectron spectroscopy was used. The thermo-mechanical property of MWCNTs/epoxy composite was also measured based on effects of oxyfluorination treatment of MWCNTs. The storage modulus of MWCNTs/epoxy composite was enhanced about 1.27 times through oxyfluorination of MWCNTs fillers at $25^{\circ}C$. The storage modulus of oxyfluorinated MWCNTs (OF73-MWCNTs) reinforced epoxy composite was much higher than that of R-MWCNTs/epoxy composite. It revealed that oxygen content led to the efficient carbon-fluorine covalent bonding during oxyfluorination. These functional groups on surface modified MWCNTs induced by oxyfluorination strikingly made an important role for the reinforced epoxy composite.

Keywords

References

  1. Nho, Y. C.; Kang, P. H.; Park, J. S. Radiat. Phys. Chem. 2004, 71, 241.
  2. Ogasawara, T.; Ishida, Y.; Kasai, T. Compos. Sci. Technol. 2009, 69, 2002. https://doi.org/10.1016/j.compscitech.2009.05.003
  3. Prolongo, S. G..; Campo, M.; Gude, M. R.; Chaos-Moran, R.; Urena, A. Compos. Sci. Technol. 2009, 69, 349. https://doi.org/10.1016/j.compscitech.2008.10.018
  4. Kang, S.; Lee, D.; Choi, N. Compos. Sci. Technol. 2009, 69, 245. https://doi.org/10.1016/j.compscitech.2008.10.016
  5. Iijima, S. Nature. 1991, 354, 56. https://doi.org/10.1038/354056a0
  6. Choi, E. S.; Brooks, J. S.; Eaton, D. L.; Al-Haik, M. S.; Hussaini, M. Y.; Garmestani, H.; Li, D.; Dahmen, K. J. App. Phys. 2003, 94, 6034. https://doi.org/10.1063/1.1616638
  7. Hamwi, A.; Alvergnat, H.; Bonnamy, S.; Beguin, F. Carbon 1997, 35, 723. https://doi.org/10.1016/S0008-6223(97)00013-4
  8. Tressaud, A.; Shirasaki, T.; Nanse, G.; Papirer, E. Carbon, 2002, 40, 217. https://doi.org/10.1016/S0008-6223(01)00177-4
  9. Lee, Y. S.; Lee, B. K. Carbon 2002, 40, 2461. https://doi.org/10.1016/S0008-6223(02)00152-5
  10. Yun, S. M.; Kim, J. W.; Jung, M. J.; Nho, Y. C.; Kang, P. H.; Lee, Y. S.; Carbon letters 2007, 8, 292. https://doi.org/10.5714/CL.2007.8.4.292
  11. Saunders, C.; Lopata, V.; Barnard, J.; Stepanik, T. Radiat. Phys. Chem. 2000, 57, 441. https://doi.org/10.1016/S0969-806X(99)00411-9
  12. Lee, Y. S.; Cho, T. H.; Lee, B. K.; Rho, J. S.; An, K. H.; Lee, Y. H. J. Fluorine Chem. 2003, 120, 99. https://doi.org/10.1016/S0022-1139(02)00316-0
  13. Kim, S. D.; Kim, J. W.; Im, J. S.; Kim, Y. H.; Lee, Y. S. J. Fluorine Chem. 2007, 128, 60. https://doi.org/10.1016/j.jfluchem.2006.10.010
  14. Lee, J. M.; Kim, J. W.; Lim, J. S.; Kim, T. J.; Kim, S. D.; Park, S. J.; Lee, Y. S. Carbon Science 2007, 8, 120.
  15. Nanse, G.; Papirer, E.; Fioux, P.; Moguet, F.; Tressaud, A. Carbon 1997, 35, 371. https://doi.org/10.1016/S0008-6223(97)89609-1
  16. Sato, Y.; Itoh, K.; Hagiwara, R.; Fukunaga, T.; Ito, Y. Carbon 2004, 42, 3243. https://doi.org/10.1016/j.carbon.2004.08.012
  17. Nanse, G.; Papirer, E.; Fioux, P.; Moguet, F.; Tressaud, A. Carbon 1997, 35, 175. https://doi.org/10.1016/S0008-6223(96)00095-4
  18. Zhou, Y.; Pervin, F.; Lewis, L.; Jeelani, S. Mat. Sci. Eng. 2008, 475, 157. https://doi.org/10.1016/j.msea.2007.04.043

Cited by

  1. Influence of Surface Treatment of Multi-walled Carbon Nanotubes on Interfacial Interaction of Nanocomposites vol.11, pp.2, 2010, https://doi.org/10.5714/CL.2010.11.2.102
  2. Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites vol.11, pp.4, 2010, https://doi.org/10.5714/CL.2010.11.4.311
  3. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess vol.12, pp.2, 2011, https://doi.org/10.5714/CL.2011.12.2.057
  4. A selective drug-release system consisting of surface-modified electrospun carbon fibers by oxy/fluorination vol.19, pp.5, 2012, https://doi.org/10.1007/s10934-011-9531-4
  5. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process vol.12, pp.5, 2016, https://doi.org/10.1007/s13391-016-6088-z
  6. MXene Nanosheet as Anode Material in Lithium-Ion Batteries vol.164, pp.12, 2017, https://doi.org/10.1149/2.1421712jes