Preparation of Proton Conducting Anhydrous Membranes Using Poly(vinyl chloride) Comb-like Copolymer

Poly(vinyl chloride) 빗살형 공중합체를 이용한 무가습 수소이온 전도성 전해질막의 제조

  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Joo-Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Seo, Jin-Ah (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ahn, Sung-Hoon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Zeng, Xiaolei (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김종학 (연세대학교 화공생명공학과) ;
  • 고주환 (연세대학교 화공생명공학과) ;
  • 서진아 (연세대학교 화공생명공학과) ;
  • 안성훈 (연세대학교 화공생명공학과) ;
  • 증효뢰 (연세대학교 화공생명공학과)
  • Published : 2009.06.30

Abstract

A comb-like copolymer consisting of a poly(vinyl chloride) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. PVC-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP). This comb-like copolymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the -OH groups of PHEA in the graft copolymer and the -COOH groups of IDA. Upon doping with phosphoric acid (PA, $H_3PO_4$) to form imidazole-PA complexes, the proton conductivity of the membranes continuously increased with increasing PA content. A maximum proton conductivity of 0.011 S/cm was achieved at $100^{\circ}C$ under anhydrous conditions. The PVC-g-PHEA/IDA/PA complex membranes exhibited good mechanical properties, i.e. 575 MPa of Young's modulus, as determined by a universal testing machine (UTM). Thermal gravimetric analysis (TGA) shows that the membranes were thermally stable up to $200^{\circ}C$.

Poly(vinyl chloride) (PVC) 주사슬과 poly(hydroxyethyl acrylate) (PHEA) 곁사슬로 구성된 빗살모양의 PVC-g-PHEA 공중합체를 원자전달라디칼 중합을 통해 합성하였다. 이렇게 합성된 PVC-g-PHEA의 OH 그룹과 이미다졸 디카르복실릭산 (IDA)의 COOH 그룹과의 에스테르 반응에 의하여 가교된 전해질막을 제조하였다. 인산(PA)을 도핑하여 이미다졸-인산 착체를 형성한 결과, PA함량이 증가함에 따라 고분자 전해질막의 수소 이온 전도도가 증가하였다. 특히 100도 비가습 조건에서 수소 이온 전도도는 최대 0.011 S/cm까지 증가하였다. 만능 재료 시험기(UTM) 측정결과, 제조된 PVC-g-PHEA/IDA/PA 전해질막은 575 MPa의 높은 Young 모듈러스 및 기계적 강도를 보여주었다. 열분석 결과(TGA) 전해질막은 $200^{\circ}C$까지 열적으로 안정함을 확인하였다.

Keywords

References

  1. S. D. Mikhailenko, K. P. Wang, S. Kaliaguine, P. X. Xing, G. P. Robertson, and M. D. Guiver, 'Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)', J. Membr. Sci. 233, 93 (2004) https://doi.org/10.1016/j.memsci.2004.01.004
  2. D. S. Kim, G. P. Robertson, M. D. Guiver, and Y. M. Lee, 'Synthesis of highly fluorinated poly(arylene ether)s copolymers for proton exchange membrane materials', J. Membr. Sci., 281, 111 (2006) https://doi.org/10.1016/j.memsci.2006.03.020
  3. B. J. Liu, G. P. Robertson, M. D. Guiver, Z. Shi, T. Navessin, and S. Holdcroft, 'luorinated poly(arylether) containing a 4-bromophenyl pendant group and its phosphonated derivative', Macromol. Rapid Commun., 27, 1411 (2006) https://doi.org/10.1002/marc.200600337
  4. S. Licoccia, M. Luisa, D. Vona, A. D'Epifanio, Z. Ahmed, S. Bellitto, D. Marani, B. Mecheri, C. Bonis, M. Trombetta, and E. Traversa, 'SPPSU-based hybrid proton conducting polymeric electrolytes for intermediate temperature PEMFCs', J. Power Sources, 167, 79 (2007) https://doi.org/10.1016/j.jpowsour.2007.01.071
  5. S. Licoccia and E. Traversa, 'Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids', J. Power Sources, 159, 12 (2006) https://doi.org/10.1016/j.jpowsour.2006.04.105
  6. C. H. Park, C. H. Lee, Y. S. Chung, and Y. M. Lee, 'Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell', Membrane Journal, 16, 241 (2006)
  7. D. J. Kim, B.-J. Chang, C. K. Shin, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Preparation and Characterization of Fluorenyl Polymer Electrolyte Membranes Containing PFCB Groups', Membane Journal, 16, 16 (2006)
  8. B.-J. Chang, D.-J. Kim, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Synthesis and Characterization of Polybenzimidazoles Containing Perfluorocyclobutane Groups for High-temperature Fuel Cell Applications', Korean Membr. J., 9, 43 (2007)
  9. T. Itoh, K. Hirai, M. Tamura, T. Uno, M. Kubo, and Y. Aihara, 'Ahydrous proton-conducting electrolyte membranes based on hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells', J. Power Sources, 178, 627 (2008) https://doi.org/10.1016/j.jpowsour.2007.08.030
  10. S. Unugur $\{C}$elik and A. Bozkurt, 'Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly(glycidyl methacrylate)', Eur. Polym. J., 44, 213 (2008) https://doi.org/10.1016/j.eurpolymj.2007.10.010
  11. S. Unugur $\{C}$elik, U. Akbey, A. Bozkurt, R. Graf, and H. W. Spiess, 'Proton-Conducting Properties of Acid-Doped Poly(glycidyl methacrylate )-1,2,4-Triazole Systems', Macromol. Chem. Phys., 209, 593 (2008) https://doi.org/10.1002/macp.200700457
  12. M. Yamada and I. Honma, 'Biomembranes for fuel cell electrolytes employing anhydrous proton-conducting uracil composites', Fuel Cells Bulletin, 2006, 11 (2006)
  13. M. Yamada and I. Honma, 'Anhydrous proton conductive membrane consisting of chitosan', Electrochimica Acta, 50, 2837 (2005) https://doi.org/10.1016/j.electacta.2004.11.031
  14. M. Yamada and I. Honma, 'Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)-heterocycle composite material', Polymer 46, 2986 (2005) https://doi.org/10.1016/j.polymer.2005.02.056
  15. M. L. Di Vona, A. D'Epifanio, D. Marani, M. Trombetta, E. Traversa, and S. Licoccia, 'SPEEK/PPSU-based organic-inorganic membranes: proton conducting electrolytes in anhydrous and wet environments', J. Membr. Sci. 279, 186 (2006) https://doi.org/10.1016/j.memsci.2005.12.003
  16. Y. W. Kim, J. K. Choi, J. T. Park, and J. H. Kim, 'Proton conducting poly(vinylidene fluoride-co-chlorotrifluoroethylene) graft copolymer electrolyte membranes', J. Membr. Sci., 313, 315 (2008) https://doi.org/10.1016/j.memsci.2008.01.015
  17. M. Zhang and T. P. Russell, 'Graft Copolymers from Poly(vinylidene fluoride-co-chlorotrifluoroethylene) via Atom Transfer Radical Polymerization', Macromolecules, 39, 3531 (2006) https://doi.org/10.1021/ma060128m
  18. D. K. Lee, Y. W. Kim, J. K. Choi, B. R. Min, and J. H. Kim, 'Preparation and Characterization of Proton-Conducting Crosslinked Diblock Copolymer Membranes', J. Appl. Polym. Sci. 107, 819 (2008) https://doi.org/10.1002/app.27122
  19. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, 'Preparation and characterization of cross-linked $SiO_2$ hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications', J. Membr. Sci., 240, 37 (2004) https://doi.org/10.1016/j.memsci.2004.04.010
  20. J. T. Park, K. J. Lee, M. S. Kang, Y. S. Kang, and J. H. Kim, 'Nanocomposite Polymer Electrolytes Containing Silica Nanoparticles: Comparison Between Poly( ethylene glycol) and Poly( ethylene oxide) Dimethyl Ether', J. Appl. Polym. Sci., 106, 4083 (2007) https://doi.org/10.1002/app.26951
  21. K. Matyjaszewski and J. Xia, 'Atom Transfer Radical Polymerization', Chem. Rev., 101, 2921 (2001) https://doi.org/10.1021/cr940534g
  22. J. F. Hester, P. Banerjee, Y. Y. Won, A. Akthakul, M. H. Acar, and A. M. Mayes, 'ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives', Macromolecules, 35, 7652 (2002) https://doi.org/10.1021/ma0122270
  23. H. Pu and D. Wang, 'Studies on proton conductivity of polyimide/$H_3PO_4$/imidazole blends', Electrochimica Acta., 51, 5612 (2004) https://doi.org/10.1016/j.electacta.2006.02.035
  24. H. Pua, S. Ye, and D. Wan, 'Anhydrous proton conductivity of acid doped vinyltriazole-based polymers', Electrochimica Acta., 52, 5879 (2007) https://doi.org/10.1016/j.electacta.2007.03.021