A Study on Generation of Stochastic Rainfall Variation using Multivariate Monte Carlo method

다변량 Monte Carlo 기법을 이용한 추계학적 강우 변동 생성기법에 관한 연구

  • 안기홍 (한국수자원공사 댐유역관리처) ;
  • 한건연 (경북대학교 공과대학 건축토목 공학부)
  • Published : 2009.06.30

Abstract

In this study, dimensionless-cumulative rainfall curves were generated by multivariate Monte Carlo method. For generation of rainfall curve rainfall storms were divided and made into dimensionless type since it was required to remove the spatial and temporal variances as well as differences in rainfall data. The dimensionless rainfall curves were divided into 4 types, and log-ratio method was introduced to overcome the limitations that elements of dimensionless-cumulative rainfall curve should always be more than zero and the sum total should be one. Orthogonal transformation by Johnson system and the constrained non-normal multivariate Monte Carlo simulation were introduced to analyse the rainfall characteristics. The generative technique in stochastic rainfall variation using multivariate Monte Carlo method will contribute to the design and evaluation of hydrosystems and can use the establishment of the flood disaster prevention system.

본 연구에서는 다변량 Monte Carlo 기법을 이용하여 무차원 누가강우량 곡선을 생성하였다. 이를 위해 30년 이상의 관측년수를 갖는 강우자료를 활용하여 강우사상을 분리하고 이를 무차원화하여 강우의 지역적, 시간적 변동성을 제거하였다. 그리고 이들 무차원화된 누가강우량곡선을 4가지 형태로 구분하여 강우자료 특성을 반영한 누가강우량 곡선을 생성하였다. 무차원 누가 강우량 곡선의 절점이 항상 0이상이고 전체의 합이 1이 되어야 하는 제약조건을 극복하기 위해 log-ratio 기법을 도입하였고 Monte Carlo 기법을 이용한 다변량 생성시 요구되는 정규화와 상관계수 반영의 문제점을 Johnson 시스템과 직교변환을 도입하여 모형에 적용함으로서 제약조건을 극복할 수 있었다. 본 연구에서 적용한 다변량 Monte Carlo 기법을 이용한 강우변동생성기법은 실제 강우량 자료의 특성을 가공없이 반영할 수 있어 해당 유역의 특성을 정확히 반영할 수 있었고 유역의 홍수대책 수립, 수공구조물 설계 및 분석 등 활용성이 매우 클 것으로 판단된다.

Keywords

References

  1. 건설교통부 (1999) 수자원관리기법개발연구조사보고서
  2. 건설교통부 (2007) 홍수량 산정기법 가이드라인(보완)
  3. Aitchison, J. (1986) Statistical analysis of compositional data. Champman & Hall Inc., NY, USA
  4. Borman, L.E. and Faucette, R.C. (1993) Frequency-domain simulation and stochastic interpolation of random vectors in multidimensional space. Computational Stochastic Mechanics
  5. Chang, C.H. and Tung, Y.K. (1994) Monte Carlo Simulation for Correlated Variables with Marginal Distributions. J. Hydraul. Eng., ASCE, Vol. 120, No. 3, pp. 313-331 https://doi.org/10.1061/(ASCE)0733-9429(1994)120:3(313)
  6. Hill, I.D., Hill, R., and Holder, R.L. (1976) Algorithm AS 99. Fitting Johnson curves by moments. Appl. Stat., Vol. 25, pp. 180-189 https://doi.org/10.2307/2346692
  7. Hromadka, T.V., McCuen, R.H., and Yen, C.C. (1987) Computational Hydrology in Flood Control Design and Planning. Lighthouse Publications
  8. Huff, F.A. (1967) Time distribution of rainfall in heavy rainfalls. Water Resources Res., Vol. 3, No. 4, pp. 1007-1019 https://doi.org/10.1029/WR003i004p01007
  9. Johnson, N.L. (1949) Systems of Frequency Curves generated by methods of translation. Biometrika, Vol. 36, pp. 149-176 https://doi.org/10.1093/biomet/36.1-2.149
  10. Liu, P.L. and Der Kiureghian, A. (1986) Multivariate distribution models with prescribed marginals and covariances. Probabilistic Eng. Mech., Vol. 1, No. 2, pp. 105-112 https://doi.org/10.1016/0266-8920(86)90033-0
  11. Melching, C.S. (1987) A Reliability Analysis on Flood Event Forecasting with Uncertainties, Ph.D. Thesis, Dept. of Civil Eng., Univ. of Ill. at Urban- Chanpaign
  12. Troutman, B.M. (1982) An analysis of input errors in precipitationrunoff models using regression with errors in the independent variables. Water Resources Res., Vol. 18, No. 4, pp. 947-964 https://doi.org/10.1029/WR018i004p00947
  13. Wu, S.J. and Tung, Y.K. (2006) Stochastic generation of hourly rainstorm events. J. of Stoch. Environ. Res. Risk. Asssess, Vol. 21, pp. 195-212 https://doi.org/10.1007/s00477-006-0056-3
  14. Zhao, B., Tung, Y.K., Yeh, K.C., Yang, J.C. (1997) Reliability analysis of hydraulic structures considering unit hydrograph uncertainty. Stochastic Hydrology and Hydraulics, Vol. 11, No. 1, pp. 33-50 https://doi.org/10.1007/BF02428424