DOI QR코드

DOI QR Code

Site Characteristics and Vegetation Structure of the Habitat of Cauliflower Mushroom (Sparassis crispa)

꽃송이버섯 자생지의 입지특성 및 식생구조

  • 오득실 (전남산림자원연구소) ;
  • 박준모 (전북산림환경연구소) ;
  • 박현 (국립산림과학원 화학미생물과) ;
  • 가강현 (국립산림과학원 화학미생물과) ;
  • 천우재 (경북산림환경연구원)
  • Published : 2009.06.30

Abstract

From 2006 to 2008, natural habitat of Sparassis crispa were surveyed for investigating ecological conditions at sixteen different sites in Korea. The investigated sites showed very wide altitudinal distribution ranged from 240 meters to 1,100 meters above the sea level. In general, S. crispa showed distinct feature of heart-rot fungi as it occurs on soils around the stems of larch (Larix kaempferi) and Korean white pine (Pinus koraiensis). But it also could be found on stems or on the stumps of dead trees, which indicated that the fungus might have several invasion routes and capabilities to grow on various ecological conditions. All of the sixteen sites were pure stands consisted with conifers such as larch or Korean white pine. The dominant tree layer showed $15.3{\sim}38.0$ meters for tree heights, thicker than twenty centimeters for the diameter at breast height (DBH), and all of them were older than thirty years. Since the stands were pure stand, species diversity of trees in the sites was extremely low. While the dominant tree layer showed only pure coniferous stand, the co-dominant tree layer, shrub layer and herbaceous layer showed more diverse features with higher Shannon-Wiener (H') indices. Soil texture of thirteen sites among sixteen investigated sites were loamy soils, and the contents of organic matter in soil were more or less higher than general forest soils in Korea with $3.79{\sim}14.32%$. The cation exchange capacity (CEC) was also relatively higher than general forest soils with $16.1{\sim}27.2$ cmol+/kg. The data indicated that the cauliflower mushroom occurring sites were relatively fertile than general forest soils. The soils were acidic with pH ranged from 4.2 to 5.2, which were typical features for conifer stands in Korea.

2006년부터 2008년까지, 3년 동안 꽃송이버섯이 발생하는 지역 16개 조사구를 대상으로 입지조건을 분석한 결과, 꽃송이버섯은 해발 $240{\sim}1,100$ m까지 다양한 지역에서 발생하였다. 꽃송이버섯은 낙엽송과 잣나무 입목 뿌리 근처에서 주로 발생하여 근주 심재 부후균의 경향을 뚜렷이 나타내었지만, 일부는 줄기부분에서, 그리고 또 다른 일부는 고사목에서도 발생하여 침입경로와 생육여건이 매우 다양함을 확인할 수 있었다. 발생지 16개 조사구의 식물군락은 교목층의 경우 모두 낙엽송 또는 잣나무로 구성된 단순림이 었고, 조사구별 수고는 $15.3{\sim}38.0$ m, 흉고직경(DBH)은 $22.7{\sim}62.0$ cm에 이르는 대경목으로서 수령은 최소 30년 이상인 것으로 조사되었다. 교목층은 단일 수종으로 구성되어 종다양성이 전혀 나타나지 않은 반면, 아교목층, 관목층 및 지피층으로 층위가 내려 갈수록 Shannon-Wiener의 종다양성지수 (H')가 높게 나타났다. 토성은 16개 조사구중 12개 조사구에서 양토로 나타났으며, 유기물 함량은 일반 산림토양에 비하여 다소 높은 $3.79{\sim}14.32%$ 범위이었다. 양이 온치환용량(CEC) 역시 $16.1{\sim}27.2$ $cmol^+/kg$로 조사되어 비교적 비옥한 토양에서 자생하고 있음을 알 수 있었으며, 토양 pH는 $4.2{\sim}5.2$ 범위로 일반적인 침엽수 입지조건과 유사한 산성토양에서 발생하고 있음을 알 수 있었다.

Keywords

References

  1. 가강현, 박원철, 윤갑희, 오득실, 천우재, 박준모. 2007. 꽃송이버섯. 국립산림과학원 연구자료 제295호. pp. 65.
  2. 김지연. 2000. 꽃송이버섯(Sparassis crispa)의 리보솜 DNA. 동국대학교 대학원 석사학위논문. pp. 48.
  3. 김한경, 박정식, 차동렬, 김양섭, 문병주. 1994. 잣버섯 인공배양에 관한 연구(I) -균사배양 조건에 관하여-. 한국균학회지 22(2):145-152.
  4. 김현중. 1996. 우리나라 낙엽송의 근주심재부후병. Plant disease and agriculture 2(2):1-12.
  5. 박 현, 이봉훈, 가강현, 박원철, 오득실, 박준모, 천우재. 2006. 증기처리한 침엽수 톱밥을 이용한 꽃송이버섯 재배. 목재공학회지 34(3):84-89.
  6. 서상영, 유영진, 정기태, 류정, 고복래, 최정식, 김명곤. 2005. 꽃송이버섯(Sparassis crispa)의 균사생장 최적화. 한국버섯학회지 3(2):45-51.
  7. 서상영. 2008. 꽃송이버섯(Sparassis crispa)의 유연관계 분석 및 종 특이적 프라이머 개발. 전북대학교 대학원 석사학위논문. pp. 42.
  8. 오득실. 2003. 꽃송이버섯의 균사생장 최적화를 위한 배지조성 및 배양조건에 관한 연구. 전남대학교 대학원 석사학위논문. pp. 33.
  9. 오득실, 박현, 박화식, 김명석, 채정기. 2006. 소맥분과 물엿을 첨가한 침엽수 톱밥배지에서의 꽃송이버섯 생산. 한국버섯학회지 4(1):39-42.
  10. 오득실, 박준모, 가강현, 천우재, 채정기, 박화식, 김명석. 2008. 구례지역 꽃송이버섯 자생지의 입지조건 분석. 한국버섯학회 학술대회 6(2):92.
  11. 윤영범. 1978. 조선버섯도감. 과학, 백과사전출판사. pp. 225.
  12. 이태수, 이지열. 2000. 한국 기록종 버섯 재정리 목록. 임업연구원 연구자료 제163호. pp. 87.
  13. 하나바이오텍(주). 2004. 꽃송이버섯 단기 대량생산 체계 확립 및 효소처리를 통한 면역물질 활성화 연구. 농림부. 농림기술 개발사업 최종보고서. pp. 191.
  14. 鏑木德二. 1940. IV (附) 菌. pp. 339-368. 鮮滿實用林業便覽. 朝鮮總督府林業試驗場刊行會. pp. 1058.
  15. Curtis, J. T. and R. P. McIntosh. 1951. An upland forest continuum in the prairie-forest boarder region of Wisconsin. Ecology 32:476-498. https://doi.org/10.2307/1931725
  16. Igarashi, T. and K. Takeuchi. 1985. Decay damage to planted forest of Japanese larch by wood-destroying fungi in the Toamkomai Experiment Forest of Hokkaido University. Res. Bull. of Coll. Exper. For. Hokkaido Univ. 42(4):837-847.
  17. Ka, K. H., J. M. Park, D. S. Oh, W. J. Cheon and K. H. Yoon. 2007. Ecological study of Sparassis crispa in Gwangreung of Korea. Korean Society of Mycology Newsletter 19(1):70.
  18. Kirk, P. M., Cannon, P. F., David, J. C. and Stalpers, J. A. 2001. Ainsworth & Bisby's Dictionary of the Fungi. Ninth edition. CABI Bioscience.
  19. Lee, J. M., Kim, J. Y., Choi, K. D., Han, K. D., Hur, H., Kim, S. W., Shim, J. O., Lee, J. Y., Lee, T. S. and Lee, M. W. 2004. Sawdust media affecting the mycelial growth and the fruiting body formation of Sparassis crispa. Mycobiology 32(4):190-193. https://doi.org/10.4489/MYCO.2004.32.4.190
  20. Lpez de la Osa, J. Gonzlez, C. Gargallo, R. Rueda, M. Cubero, E. Orozco, M. Avi, A. Eritja and Ramn. 2006. Destabilization of Quadruplex DNA by 8-Aminoguanine. Chembiochem : a European Journal of Chemical Biology 7(1):46-48. https://doi.org/10.1002/cbic.200500281
  21. Mao X. I. and C. P. Jiang. 1993. Economic macrofungi of Tibet. Beijing, Beijing Science and Technology Press. pp. 651.
  22. Muller-Dombris, D. and H. Ellenberg. 1974. Aims and methods of vegetation ecology. John Wiley and Sons Inc., New York. pp. 547.
  23. Pielou, E. C. 1975. Mathematical ecilogy. John Wiley and Sons Inc., New York. pp. 385.
  24. Shim, J. O., S. G. Son, S. O. Yoon, Y. S. Lee, T. S. Lee, S. S. Lee, K.D. Lee and M.W. Lee. 1998. The optimal factors for the mycelial growth of Sparassis crispa. Kor. J. Mycol. 26(1):39-46.
  25. Wang, Z., M. Binder, Y. C. Dai, and D. S. Hibbett. 2004. Phylogenetic relationships of Sparassis inferred from nuclear and mitochondrial ribosomal DNA and RNA polymerase sequences. Mycologia 96:1015-1029. https://doi.org/10.2307/3762086

Cited by

  1. Optimization of Medium Composition for the Mycelial Growth of Sparassis crispa vol.22, pp.2, 2012, https://doi.org/10.5352/JLS.2012.22.2.200
  2. Physicochemical components and antioxidant activity of Sparassis crispa mixture fermented by lactic acid bacteria vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.361
  3. Characteristic of mycelial growth of cauliflower mushroom (Sparassis latifolia) using replacement culture with Trichoderma and rDNA analysis in genealogy of crossbreeding strain vol.12, pp.1, 2014, https://doi.org/10.14480/JM.2014.12.1.41
  4. Ecological Characteristics of Host Plants for Phellinus linteus at Habitats in Gangwon-Do Province, Korea vol.21, pp.9, 2012, https://doi.org/10.5322/JES.2012.21.9.1087
  5. Dietary Fiber and β-Glucan Contents of Sparassis crispa Fruit Fermented with Lactobacillus brevis and Monascus pilosus vol.41, pp.12, 2012, https://doi.org/10.3746/jkfn.2012.41.12.1740
  6. Purification and characterisation of an alkaliphilic esterase from a culinary medicinal mushroom, Sparassis crispa vol.124, pp.4, 2011, https://doi.org/10.1016/j.foodchem.2010.07.094
  7. Effect of Sparassis crispa Extracts on Immune Cell Activation and Tumor Growth Inhibition vol.23, pp.8, 2013, https://doi.org/10.5352/JLS.2013.23.8.984
  8. Component analysis and immuno-stimulating activity of Sparassis crispa stipe vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.515