DOI QR코드

DOI QR Code

Comparative Study on the Sawdust Cultivation and the Antioxidants of Hericium spp.

노루궁뎅이버섯류의 톱밥재배와 항산화물질 비교 연구

  • Ryu, Sung-Ryul (Division of Wood Chemistry and Microbiology, Korea Forest Research Institute) ;
  • Lee, Wi-Young (Division of Biotechnology, Korea Forest Research Institut) ;
  • Ka, Kang-Hyeon (Division of Wood Chemistry and Microbiology, Korea Forest Research Institute)
  • 유성열 (국립산림과학원 화학미생물과) ;
  • 이위영 (국립산림과학원 생물공학과) ;
  • 가강현 (국립산림과학원 화학미생물과)
  • Published : 2009.06.30

Abstract

As a preliminary study in order to develop new varieties of Hericium species, this study was carried out to investigate the optimal temperature for mycelial growth, to figure out the applicability to sawdust cultivation on Quercus mongolica substrate, and to analyze the antioxidant capacity of ergothioneine and polyphenols in Hericium strains preserved in Korea Forest Research Institute (KFRI). In the results of optimal temperature for mycelial growth of eight Hericium erinaceus, it was $20^{\circ}C$ in a strain (KFRI 842), $25^{\circ}C$ in five strains (KFRI 507, 508, 509, 843, 845), and $30^{\circ}C$ in two strains (KFRI 582, 844). Optimal temperature for mycelial growth of H. coralloides (KFRI 713) was $25^{\circ}C$. Four strains (KFRI 508, 843, 844, 713) out of the total nine Hericium strains showed full mycelium growth within 20 days at the optimal temperature on PDA medium in petri-dish (85 mm in diameter). The other strains have need of more time for full mycelium growth. Mushroom production of H. erinaceus ranged from 215 to 384 g of fresh weight and its dry weight was 7 to 9% of it, whereas that of H. coralloides was 299 g of fresh weight and its dry weight was 10% of it. The contents of ergothioneine and polyphenols of H. erinaceus strains were different by strains and those were in the range of $1.6{\sim}3.7$ mg/g dw. and $5.9{\sim}7.8$ mg/g dw., respectively. On the other hand, those of H. coraloides were in the range of 1.7 mg/g dw. and 3.9 mg/g dw., respectively. From the results of correlation ($R^2$ = 0.1) between ergothioneine and polyphenols in the strains, it was found that the total contents of them differ by strains but the ratio of the two compounds was not very different in the strains.

신품종 개발을 위한 예비조사로써 본 연구는 국립산림과학원에서 보존중인 노루궁뎅이류의 균주를 이용하여 균사생장을 위한 최적온도, 신갈나무에 톱밥재배, 황산화 활성물질인 ergothioneine와 polyphenols에 대해 조사하였다. 노루궁뎅이의 균사생장 최적온도는 $20^{\circ}C$에서 KFRI 842, $25^{\circ}C$에서 5개 균주(KFRI 507, 508, 509, 843, 845), $30^{\circ}C$에서 2균주(KFRI 582, 844) 이었다. 산호침버섯의 균사생장 최적온도는 $25^{\circ}C$ 이었다. 노루궁뎅이류 9개 균주중 4개(KFRI 508, 843, 844, 713)는 $25^{\circ}C$에서 20일내에 직경 85 mm의 페트리디쉬 PDA 배지를 채웠다. 그리고 나머지 균주들은 페트리디쉬를 채우는데 더 많은 시간이 필요하였다. 노루궁뎅이의 버섯 생산량은 $149{\sim}205$ g 범위 이었고 자실체 건물율은 $7{\sim}9%$ 이었다. 산호침버섯은 261 g 이었고 건물율은 10% 이었다. 노루궁뎅이의 ergothioneine과 polyphenols는 $1.6{\sim}3.7$ mg/g과 $5.9{\sim}7.8$ mg/g 이었고, 균주별로 차이가 있었다. 산호침버섯은 1.7mg/g의 ergothioneine과 3.9mg/g의 polyphenols를 함유하고 있었다. Ergothioneine과 polyphenols은 균주 간 두 성분의 함량 차이는 나타났으나 함량비는 차이가 없었다($R^2$= 0.1).

Keywords

References

  1. 고한규, 김동명, 박원목. 1997. 노루궁뎅이버섯 (Hericium erinaceus)의 새로운 균사배양기의 조성. 한국균학회지 25: 369-376.
  2. 고한규, 박혁구, 김성환, 박원목. 2004. 톱밥 및 농업부산물 이용 배지상에서 노루궁뎅이버섯 (Hericium erinaceum)의 균사생장 및 자실체형성. 한국균학회지 32: 89-94. https://doi.org/10.4489/KJM.2004.32.2.089
  3. 김광포, 김한경, 박정식, 유영복, 유창현, 전창성, 정종천, 조세연. 2000. 최신병해충방제도감 -재배기술과 이론-. 한국버섯연구회. p699-710.
  4. 김양섭, 석순자, 원항연, 이강효, 김완규, 박정식. 2004. 한국의 버섯 -식용버섯과 독버섯-. 동방미디어(주).
  5. 박수정, 홍주현, 윤광섭, 최용희. 2006. 노루궁뎅이버섯 추출물을 이용한 제형가공 및 품질특성. 한국식품저장유통학회 13: 569-573.
  6. 이경아, 정지은, 최용희. 2007. 노루궁뎅이버섯의 마이크로웨이브 추출공정 최적화. 산업식품공학 11: 195-202.
  7. 이태수, 이지열. 2000. 한국 기록종 버섯 재정리 목록. 임업연구원 연구자료 제163호.
  8. 장현유, 노문기. 1999. 노루궁뎅이버섯의 재배방법에 따른 수량성. 한국균학회지 27: 249-251.
  9. 정재현, 이광호, 이신영. 2007. Hericium erinaceum 균사체와 자실체 열수 추출물의 몇몇 in-vitro 및 in-vivo 생물활성. 한국생물공학회지 22: 22-29.
  10. 최미애, 박난영, 우승미, 정용진, 신승렬. 2003. 노루궁뎅이 버섯 및 추출물의 특성. 한국식품저장유통학회지 10: 560-564.
  11. 大森 淸壽. 2000. きのこ登錄品種200. 全國食用きのこ種菌協會.
  12. 森喜美男. 1992. 最新シイタケのつくり方. 日本きのこ硏究所.
  13. Audley B. G. and Tan, C. H. 1968. The uptake of ergothioneine from the soil into the latex of Hevea brasiliensis. Phytochemistry 7: 999-2000. https://doi.org/10.1016/S0031-9422(00)90759-3
  14. Akanmu D., Cecchini, R., Aruoma, O. I. and Halliwell, B. 1991. The antioxidant action of ergothioneine. Arch Biochemical and Biophysics 288: 10-16. https://doi.org/10.1016/0003-9861(91)90158-F
  15. Arduino A., Eddy, L. and Hochstein, P. 1990. The reduction of ferryl myoglobin by ergothioneine: a novel function for ergothioneine. Arch Biochemical and Biophysics 281: 41-43. https://doi.org/10.1016/0003-9861(90)90410-Z
  16. Aruoma O. I., Whiteman, M. E. and Halliwell, B. 1997. The antioxidant action of L-ergothioneine. Assessment of its ability to scavenge peroxynitrite. Biochemical and Biophysical Research Communications 231: 389-391. https://doi.org/10.1006/bbrc.1997.6109
  17. Chang, S. T. and Miles, P. G. 2004. Mushrooms: Cultivation, nutritional value, medicinal effect, and environmental impact. CRC Press.
  18. Cui Y., Kim, D. S. and Park, K. C. 2006. Antioxidant effect of Inonotus obliquus. Journal of Ethnopharmacology 96: 79-85. https://doi.org/10.1016/j.jep.2004.08.037
  19. Dubost, N. J., Ou, B. and Beelman, R. B. 2007. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chemistry 105: 727-735. https://doi.org/10.1016/j.foodchem.2007.01.030
  20. Dubost N. J., Beelman R., D. and Royse D. 2006. Identification and quantification of ergothioneine in cultivated mushrooms using liquid chromatography mass spectroscopy. International Journal of Medicinal Mushrooms 8: 215-222. https://doi.org/10.1615/IntJMedMushr.v8.i3.30
  21. Fu, H.Y., Shieh, D.E. and Ho, C.T. 2002. Antioxidant and free radical scavenging activities of edible mushrooms. Journal of Food Lipids 9: 35-46. https://doi.org/10.1111/j.1745-4522.2002.tb00206.x
  22. Flck, M. 1995. Welcher Pilz ist das?. Franckh-Kosmos Verlags-GmbH & Co.
  23. Hall, I. R., Stephenson, S. L., Buchanan, P. K., Wang, Y. and Cole, A. L. J. 2004. Edible and poisonous mushrooms of the world. Timber Press.
  24. Kawagishi, H., Masui, A., Tokuyama, S. and Nakamura, T. 2006. Erinacines J and K from the mycelia of Hericium erinaceum. Tetrahedron 62: 8463-8466. https://doi.org/10.1016/j.tet.2006.06.091
  25. Kenmoku, H., Sassa, T. and Kato, N. 2000. Isolation of erinacine P, a new parental metabolite of cyathane-xylosides, from Hericium erinaceum and its biomimetic conversion into erinacines A and B. Tetrahedron Letters 41: 4389-4393. https://doi.org/10.1016/S0040-4039(00)00601-8
  26. Ko, H. G., Park, H. G., Park, S. H., Choi, C. W., Kim, S. H. and Park, W. M. 2005. Comparative study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium. Bioresource Technology 96:1439-1444. https://doi.org/10.1016/j.biortech.2004.12.009
  27. Mau, J.-L., Lin, H.-C. and Song, S.-F. 2002. Antioxidant properties of several specialty mushrooms. Food Research International 35: 519-526. https://doi.org/10.1016/S0963-9969(01)00150-8
  28. Melville D. B., Genghof, D. S., Inamine, E. and Kovalenko. 1956. Ergothioneine in microorganisms. Journal of Biological Chemistry 233: 9-17.
  29. Sakrak O., Kerem, M., Bedirli, A., Pasaoglu, H., Akyurek, N., Ofluoglu, E. and Gltekin, F. A. 2008. Ergothioneine modulates proinflammatory cytokines and heat shock protein 70 in mesenteri ischemia and reperfusion injury. Journal of Surgical Research 144: 36-42. https://doi.org/10.1016/j.jss.2007.04.020
  30. Shimbo, M., Kawagishi, H. and Yokogoshi, H. 2005. Erinacine A increases catecholamine and nerve growth factor content in the central nervous system of rats. Nutrition Research 25: 617-623. https://doi.org/10.1016/j.nutres.2005.06.001
  31. Son, C. G., Shin, J. W., Cho, J. H., Cho, C. K., Yun, C. H., Chung, W. and Han, S. H. 2006. Macrophage activation and nitric oxide production by water soluble components of Hericium erinaceum. International Immunopharmacology 6: 1363-1369. https://doi.org/10.1016/j.intimp.2006.03.005
  32. Wang, Z., Luo, D. and Liang, Z. 2004. Structure of polysaccharides from the fruiting body of Hericium erinaceus Pers. Carbohydrate Polymers 57: 241-247. https://doi.org/10.1016/j.carbpol.2004.04.018
  33. Zhang, A.-Q., Sun, P.-L., Zhang, J.-S., Tang, C.-H., Fan, J.-M., Shi, X.-M. and Pan, Y.-J. 2007. Structural investigation of a nevel fucoglucogalactan isolated from the fruiting bodies of the fungus Hericium erinaceus. Food Chemistry 104: 451-456. https://doi.org/10.1016/j.foodchem.2006.11.033

Cited by

  1. Physicochemical Characteristics and Antioxidant activity, Antimutagenicity, and Cytotoxicity of Hot-water Extract of Hericium erinaceus vol.28, pp.5, 2012, https://doi.org/10.9724/kfcs.2012.28.5.569
  2. The difference of occurring pattern of Hericium erinaceus by pinheading induction methods vol.13, pp.1, 2015, https://doi.org/10.14480/JM.2015.13.1.11
  3. Study on Sawdust Bag Cultivation of Shiitake (Lentinula edodes), using Oak Wilt-Diseased Logs 2016, https://doi.org/10.4489/KJM.2016.44.4.300
  4. Biological Activities of Water Extract and Solvent Fractions of an Edible Mushroom, Hericium erinaceus vol.40, pp.3, 2012, https://doi.org/10.4489/KJM.2012.40.3.159