Low Loss Fusion Splicing of Photonic Crystal Fiber and Single-Mode Fiber

광자결정 광섬유와 단일모드 광섬유 저손실 융착접속

  • Ahn, Jin-Soo (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, Kwang-No (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Gil-Hwan (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Sang-Bae (Photonic Research Laboratory, Intelligent System Research Division, Korea Institute of Science and Technology) ;
  • Lee, Kyung-Shik (School of Information and Communication Engineering, Sungkyunkwan University)
  • 안진수 (성균관대학교 정보통신공학부) ;
  • 박광노 (성균관대학교 정보통신공학부) ;
  • 김길환 (성균관대학교 정보통신공학부) ;
  • 이상배 (한국과학기술연구원 지능시스템연구본부 광기술연구실) ;
  • 이경식 (성균관대학교 정보통신공학부)
  • Published : 2009.07.25

Abstract

We proposed a fusion splicing method for low splicing loss between a single-mode fiber(SMF) and two different photonic crystal fibers(PCFs) such as a photonic bandgap fiber(PBGF) and highly nonlinear photonic crystal fiber(NL-PCF). The splicing loss between the SMF and PBGF is affected by air-hole collapse. Therefore, we optimized fusion splicer and reduced a splicing loss below 1.22 dB. We also inserted a Intra High Numerical Aperture(UHNA) fiber between the SMF and NL-PCF to achieve a splicing loss of below 2.59 dB.

단일모드 광섬유(SMF)와 포토닉 밴드갭 광섬유(PBGF), SMF와 고비선형 광자결정 광섬유(NL-PCF)의 저손실 융착접속을 위한 방법을 제안하였다. SMF와 PBGF를 융착접속할 경우 PBGF의 공기구멍 붕괴현상에 의한 손실이 가장 큰 영향을 미치므로 PBGF의 공기구멍을 유지시키기 위해서 광섬유 융착접속기를 최적화하여 접속손실을 1.22 dB이하로 줄였다. SMF와 NL-PCF의 융착접속시에는 Ultra High Numerical Aperture(UHNA)광섬유를 두 광섬유 사이에 삽입하여 융착접속하는 방법을 적용하여 평균 2.59 dB이하로 접속손실을 줄였다.

Keywords

References

  1. T. A Birks, J C. Knight, P. St. J Russell, 'Endlessly single-mode photonic crystal fiber,' Optics Letters, Vol. 22, no. 13, pp. 961-963, July 1997 https://doi.org/10.1364/OL.22.000961
  2. J C. Knight, 'Photonic crystal fibres,' Nature, Vol. 424, no. 6950, pp. 847-851, August 2003 https://doi.org/10.1038/nature01940
  3. P. St. J Russell, 'Photonic crystal fibers,' Science, Vol. 299, no. 5605, pp. 358-362, January 2003 https://doi.org/10.1126/science.1079280
  4. P. st. J Russell, 'Photonic-crystal fibers,' Journal of Lightwaue Technology, Vol. 24, no . 12, pp. 4729-4749, December 2006 https://doi.org/10.1109/JLT.2006.885258
  5. K. N. Park, K. S. Lee, 'Improved effective-index method for analysis of photonic crystal tiber,' Optics Letters, VoL 30, no. 9, pp. 958-960, :May 2005 https://doi.org/10.1364/OL.30.000958
  6. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, 'Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,' Journal of Lightwave Technology, VoL 25, no. 11, pp. 3563.-3574, November '2007 https://doi.org/10.1109/JLT.2007.907787
  7. L. Xiao, W. Jll, M. S. Demokan, 'Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,' Optics Letters, Vol. 32. no. 2, pp. 115-117, January '2007 https://doi.org/10.1364/OL.32.000115
  8. R. Thapa, K Knabe, K L. Corwin, B. R. Washburn, 'Arc fusion splicing of hollow-core phtonic bandgap fibers for gas-filled fiber cells,' Optics Express, Vol. 14, no. 21, pp. 9576-9583, October 2006 https://doi.org/10.1364/OE.14.009576
  9. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, C. Zhao, 'Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,' Optics Express, Vol. 13, no. 22 pp. 9014-9022, October 2005 https://doi.org/10.1364/OPEX.13.009014
  10. O. Frazao, J. P. Carvalho, H. M. Salgado, 'Low-loss splice in a microstructured fibre using a conventional fusion splicer,' Microwave and Optiad Technology Letters, Vol. 46. no. 2, pp. 172-174, July 2005 https://doi.org/10.1002/mop.20935