Electrohydrodynamic Spray Drying Using Co-axial Nozzles for Protein Encapsulation

단백질 캡슐화를 위한 동축 이중 노즐을 사용한 전기분무건조법

  • Ho, Hwan-Ki (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Park, Se-Hyun (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Park, Chul-Ho (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Lee, Jong-Hwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
  • 호환기 (중앙대학교 화학신소재공학부) ;
  • 박세현 (중앙대학교 화학신소재공학부) ;
  • 박철호 (중앙대학교 화학신소재공학부) ;
  • 이종휘 (중앙대학교 화학신소재공학부)
  • Published : 2009.07.25

Abstract

Spray drying is an effective and stable process, which has been widely used to produce pharmaceutical powders. In the traditional spray drying process, it was not quite easy to control the aggregation and the size of particles. Particularly, the preparation of polymeric particles was relatively hard compared to the preparation of food and pharmaceutical ingredients, typically organic materials of small molecular weights. In this study, modification of a conventional spray dryer was tried to use electrical charge and co-axial nozzles to prepare polymeric particles. Poly(ethylene glycol) and poly (D,L-lactide-co-glycolide) were used as the inner polymeric materials, and lactose as the outer shell materials. The results showed that electrohydrodynamic spray-dried particles had a relatively uniform size and particle morphology, and the aggregation of particles could be suppressed compared to the conventional spray-dried particles. The electrohydrodynamic spray-dried powders consisted of spherical particles of $2{\sim}5{\mu}m$ diameters.

분무건조는 약물의 입자 제조에 널리 사용되고 있는 효과적이고 안정적인 공정 중 하나이다. 과거 분무건조의 방법에서는 입자의 응집을 조절하기 쉽지 않았으며, 크기 조절에도 많은 어려움을 겪어 왔다. 특히 고분자 입자의 제조는 저분자 유기물질인 식품, 의약원료 등과 비교하여 상대적으로 제조하기 어려운 면이 있었다. 본 연구에서는 기존의 분무건조기를 개조하여 노즐에 전기장을 외부에서 가해 줌과 동시에 동축 이중 노즐을 사용하여 고분자 입자의 제조를 시도하였다. 내부 고분자 물질로는 폴리에틸렌글리콜과 폴리락타이드코글리코라이드를, 외부 물질로는 락토오스를 사용하였다. 그 결과 전기장을 사용하지 않는 분무건조에 비해 비교적 일정한 크기와 모양을 제조할 수 있었으며, 입자 간의 응집을 줄일 수 있음을 확인하였다. 전기분무건조된 PLGA 분말은 주로 $2{\sim}5{\mu}m$ 기인 둥근 모양의 입자로 구성되었다.

Keywords

References

  1. O. Lastow, J. Andresson, A. Nilsson, and W. Balachandran, Pharmaceutical Development and Thechnology, 12, 175 (2007) https://doi.org/10.1080/10837450701212594
  2. J. XIe, J. C. M. Marijinissen, and C. H. Wang, Biomaterials, 27, 3321 (2006) https://doi.org/10.1016/j.biomaterials.2006.01.034
  3. J. Xie, W. J. Ng, L. Y. Lee, and C. H. Wamg, J. Colloid Interf. Sci., 317, 469 (2008) https://doi.org/10.1016/j.jcis.2007.09.082
  4. M. Asada, H. Akahashi, H. Okamoto, H. Tanino, and K. Danjo, Int. J. Pharm., 270, 167 (2004) https://doi.org/10.1016/j.ijpharm.2003.11.001
  5. J. M. Lopez-Herrera, A. Barrero, A. Lopez, I. G. Loscertales, and M. Marquez, J. Aerosol Sci., 34, 535 (2003) https://doi.org/10.1016/S0021-8502(03)00021-1
  6. F. X. Lacasse, P. Hildgen, and J. N. McMullen, Int. J. Pharm., 174, 101 (1998) https://doi.org/10.1016/S0378-5173(98)00254-3
  7. G. Leach, G. Oliveira, and R. Morais, J. Ind. Microbiol. Biotech., 20, 82 (1999) https://doi.org/10.1038/sj.jim.2900485
  8. M. Jimenez, H. S. Garcia, and C. I. Beristain, Eur. Food Res. Technol., 219, 588 (2004) https://doi.org/10.1007/s00217-004-0992-4
  9. M. E. Rodriguez-Huezo, R. Pedroza-Islas, L. A. Prado- Barragan, C. I. Beristain, and E. J. Vernon-Carter, J. Food Sci., 69, E351 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb13641.x
  10. W. C. Hinds, Aerosol Technology, Properties, Behavior and Measurement of Airborne Particle, John Wiley & Sons, New York, 1982
  11. I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, Science, 295, 1695 (2002) https://doi.org/10.1126/science.1067595
  12. T. Sakai, M. Sadakata, M. Sato, and K. Kimura, Atomization Sprays, 1, 171 (1991) https://doi.org/10.1615/AtomizSpr.v1.i2.30
  13. A. M. Ganan-Calvo, J. Aerosol Sci., 30, 863 (1999) https://doi.org/10.1016/S0021-8502(98)00780-0
  14. A. G. Marin, I. G. Loscertales, M. Marquez, and A. Barrero, Phys. Rev. Lett., 98, 014502 (2007) https://doi.org/10.1103/PhysRevLett.98.014502
  15. F. Mei and D. R. Chen, Phys. Fluids, 19, 103303 (2007) https://doi.org/10.1063/1.2775976
  16. S. N. Jayasinghe and A. Townsend-Nicholson, Lab Chip, 6, 1086 (2006) https://doi.org/10.1039/b606508m
  17. Y. L. Su, Z.Y. Fu, J. Y. Zhang, W. M. Wang, H. Wang, Y. C. Wang, and Q. J. Zhang, Powder Technology, 184, 114 (2008) https://doi.org/10.1016/j.powtec.2007.08.014